2023, Número 4
<< Anterior Siguiente >>
Rev Educ Bioquimica 2023; 42 (4)
Acerca del origen de los organismos multicelulares y la aparición de la diferenciación celular
Castro-Muñozledo F
Idioma: Español
Referencias bibliográficas: 60
Paginas: 196-206
Archivo PDF: 547.07 Kb.
RESUMEN
El origen de la multicelularidad, y por consecuencia, de la expresión de funciones especializadas en las células que constituyen a un individuo son de gran interés para entender los procesos evolutivos que llevaron al surgimiento de los metazoarios, de las plantas, de los hongos, así como de otros grupos caracterizados por su organización multicelular en sólo una etapa de su ciclo de vida. Se considera que la multicelularidad tuvo un origen: I) clonal o por división sin separación de las células hijas, II) por agregación de individuos, III)por septación de cenocitos o sincicios, o bien fue IV) una respuestaadaptativa a las presiones del medio. De manera adicional, la evidenciaderivada de estudios filogenéticos, sumada a la secuenciación de moléculasaltamente conservadas durante la evolución y la comparación entre genomasde organismos de diferentes grupos taxonómicos sugieren que la aparicióndel estado multicelular fue precedida por el establecimiento de las familiasgénicas que codifican para las proteínas que componen la maquinaria deseñalización y la maquinaria de regulación de la expresión genética en losancestros unicelulares de los metazoarios. Estos eventos establecieron elescenario para que apareciera la división de funciones en los primerosorganismos multicelulares, y, por ende, la formación de los primeros tejidoscon funciones especializadas. En este trabajo hacemos una breve reseña deestos procesos.
REFERENCIAS (EN ESTE ARTÍCULO)
Maynard Smith J, Szathmáry E. The major transitions in evolution. Oxford: University Press. 1995; 360 pp.
Mikhailov KV, Konstantinova AV, Nikitin MA, Troshin PV, Rusin LY, Lyubetsky VA, Panchin YV, Mylnikov AP, Moroz LL, Kumar S, Aleoshin VV. The origin of Metazoa: a transition from temporal to spatial cell differentiation. BioEssays 2009; 31:758-68.
Ruiz-Trillo I, Burger G, Holland PWH, King N, Lang BF, Roger AJ, Gray M. The origins of multicellularity: a multi-taxon genome initiative. Trends in Genetics 2007; 23:113-8.
Grosberg RK, Strathmann RR. The evolution of multicellularity: A minor major transition? Annu Rev Ecol Evol Syst. 2007; 38:621-54.
Rainey PB, Kerr B. Cheats as first propagules: A new hypothesis for the evolution of individuality during the transition from single cells to multicellularity. Bioessays 2010; 32:872-80.
Arias-Del Angel JA, Nanjundiah V, Benítez M, Newman SA. Interplay of mesoscale physics and agent‑like behaviors in the parallel evolution of aggregative multicellularity. EvoDevo. 2020; 11:21.
Kaplan HB. Cell-cell interactions that direct fruiting body development in Myxococcus xanthus. Curr Opin Genet Dev. 1991; 1:363-9.
Keating MT, Bonner JT. Negative chemotaxis in cellular slime molds. J Bacteriol. 1977; 130:144-7.
Müller K, Gerisch G. A specific glycoprotein as the target of adhesion blocking Fab in aggregating Dictyostelium cells. Nature. 1978; 274:445-7.
Loomis WF. Cell-cell adhesion in Dictyostelium discoideum. Dev Genet. 1988; 9:549-59.
Pelling AE, Li Y, Cross SE, Castaneda S, Shi W, Gimzewski JK. Self-organized and highly ordered domain structures within swarms of Myxococcus xanthus. Cell Motil Cytoskel. 2006; 63:141-8.
Bonner JT. Aggregation and differentiation in the cellular slime molds. Annu Rev Microbiol. 1971; 25:75-92.
Liu BA, Nash PD. Evolution of SH2 domains and phosphotyrosine signalling networks. Philos Trans R Soc Lond B Biol Sci. 2012; 367:2556-73.
Anantharaman V, Iyer LM, Aravind L. Comparative genomics of protists: new insights into the evolution of eukaryotic signal transduction and gene regulation. Annu Rev Microbiol. 2007; 61:453-75.
Sebé-Pedrós A, Roger AJ, Lang FB, Ruiz-Trillo I. Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci USA. 2010; 107:10142-7.
Cavalier-Smith T. Origin of animal multicellularity: precursors, causes, consequences - the choanoflagellate/sponge transition, neurogenesis, and the Cambrian explosion. Phil Trans R Soc. B. 2017; 372:20150476.
Mora Van Cauwelaert E, Arias Del Angel JA, Benítez M, Azpeitia EM. Development of cell differentiation in the transition to multicellularity: a dynamical modeling approach. Front. Microbiol. 2015; 6:603.
Niklas KJ. The Evolutionary-DevelopmentalOrigins of Multicellularity. Am J Botany. 2014;101: 6-25.
Sachs JL. Resolving the first steps tomulticellularity. Trends Ecol Evol. 2008;23:245-8.
Jindrich K, Degnan BM. The diversification ofthe basic leucine zipper family in eukaryotescorrelates with the evolution of multicellularity.BMC Evolutionary Biology. 2016; 16:28.
21.Degnan BM, Vervoort M, Larroux C, RichardsGS. Early evolution of metazoan transcriptionfactors. Curr Opin Genet Dev. 2009; 19:591-9.
Richards GS, Simionato E, Perron M, AdamskaM, Vervoort M, Degnan BM. Sponge GenesProvide New Insight into the EvolutionaryOrigin of the Neurogenic Circuit. CurrentBiology. 2008; 18:1156-61.
Koschwanez JH, Foster KR, Murray AW.Sucrose Utilization in Budding Yeast as a Modelfor the Origin of UndifferentiatedMulticellularity. PLoS Biol. 2011; 9: e1001122.
Buss LW. The Evolution of Individuality.Princeton University Press. Princeton, NJ. 1988;203 pp.
Parfrey LW, Lahr DJG. Multicellularity aroseseveral times in the evolution of eukaryotes.Bioessays. 2013; 35:339-47.
Brunet T, King N. The origin of animalmulticellularity and cell differentiation. DevCell. 2017; 43:124-40.
Margulis. L. Symbiosis in Cell Evolution. W.H.Freeman & Co., Ltd. San Francisco, USA. 1981;419 pp.
Lang BF, O'Kelly C, Nerad T, Gray MW,Burger G. The closest unicellular relatives ofanimals. Curr Biol. 2002; 12:1773-8.
Dayel MJ, Alegado RA, Fairclough SR, LevinTC, Nichols SA, McDonald K, King N. Celldifferentiation and morphogenesis in thecolony-forming choanoflagellate Salpingoecarosetta. Dev Biol. 2011; 357:73-82.
Müller WEG. Review: How was metazoanthreshold crossed? The hypothetical Urmetazoa.Comp Biochem Physiol. Part A 2001; 129:433-60.
Niklas KJ, Newman SA. The origins ofmulticellular organisms: multicellular origins.Evol Dev. 2013; 15:41-52.
Suga H, Ruiz-Trillo I. Evolution ofDevelopmental Control Mechanism: Development of ichthyosporeans sheds light on the origin of metazoan multicellularity. Dev Biol. 2013; 377:284-92.
Mizuno K, Maree M, Nagamura T, Koga A,Hirayama S, Furukawa S, Tanaka K, MorikawaK.Novel multicellular prokaryote discoverednext to an underground stream. eLife 2022;11:e71920.
Mikhailov KV, Konstantinova AV, Nikitin MA,Troshin PV, Rusin LY, Lyubetsky VA, PanchinYV, Mylnikov AP, Moroz LL, Kumar S,Aleoshin VV. The origin of Metazoa: atransition from temporal to spatial celldifferentiation. Bioessays. 2009; 31:758-68.
Ispolatov I, Ackermann M. Doebeli M. Divisionof labour and the evolution of multicellularity.Proc. R. Soc. B. 2012; 279:1768-76.
Kirk DL, Harper JF. Genetic, biochemical, andmolecular approaches to Volvox developmentand evolution. Int Rev Cytol. 1986; 99:217-93.
Kirk DL, Baran GJ, Harper JF, Huskey RJ,Huson KS, Zagris N. Stage-specifichypermutability of the regA locus of Volvox, agene regulating the germ-soma dichotomy. Cell.1987; 48:11-24.
Von Gromoff ED, Beck CF. Genes expressedduring sexual differentiation ofChlamydomonas reinhardtii. Mol Gen Genet.1993; 241:415-21.
Zeng X, Zhang CC. The Making of a Heterocystin Cyanobacteria. Annu Rev Microbiol. 2022;76:597-618.
Wolk CP. Heterocyst formation. Annu RevGenet. 1996; 30:59-78.
Conlin PL, Ratcliff WC. Evolution:understanding the origins of facultativemulticellular life cycles. Curr Biol. 2023;33:R356-R358.
Srivastava M, Simakov O, Chapman J, Fahey B,Gauthier ME, Mitros T, Richards GS, Conaco C,Dacre M, Hellsten U, et al. The Amphimedonqueenslandica genome and the evolution of animal complexity. Nature. 2010; 466:720-6.
Larroux C, Luke GN, Koopman P, Rokhsar DS,Shimeld SM, Degnan BM. Genesis andexpansion of metazoan transcription factor geneclasses. Mol. Biol. Evol. 2008; 25:980-96.
Shinnick TM, Lerner RA. The cbpA gene: roleof the 26,000-dalton carbohydrate-bindingprotein in intercellular cohesion of developingDictyostelium discoideum cells. Proc. Natl.Acad. Sci. USA. 1980; 77:4788-92.
Hanschen ER, Marriage TN, Ferris PJ, HamajiT, Toyoda A, Fujiyama A, Neme R, Noguchi H,Minakuchi Y, Suzuki M, Kawai-Toyooka H,Smith DR, Sparks H, Anderson J, Bakarić R,Luria V, Karger A, Kirschner MW, Durand PM,Michod RE, Nozaki H, Olson BJSC. TheGonium pectorale genome demonstrates co-option of cell cycle regulation during theevolution of multicellularity". Nat Commun.2016; 7:11370.
Naumann B, Burkhardt P. Spatial Cell Disparityin the Colonial Choanoflagellate Salpingoecarosetta. Front. Cell Dev. Biol. 2019; 7:231.
Niklas KJ, Wayne R, Benítez M, Newman SA.Polarity, planes of cell division, and theevolution of plant multicellularity. Protoplasma.2019; 256:585-99.
Cheng Q, Fowler R, Tam LW, Edwards L,Miller SM. The role of GlsA in the evolution ofasymmetric cell division in the green algaVolvox carteri. Dev Genes Evol. 2003; 213:328-35.
Wavreil FDM, Yajima M. Diversity of activatorof G-protein signaling (AGS)-family proteinsand their impact on asymmetric cell divisionacross taxa. Dev Biol. 2020; 465:89-99.
Yañez-Guerra LA, Thiel D, Jékely G.Premetazoan Origin of Neuropeptide Signaling.Mol Biol Evol. 2022; 39:msac051.
Junqueira Alves C, Silva Ladeira J, Hannah T,Pedroso Días RJ, Zabala Capriles PV, YotokoK, Zou H, Friedel RH. Evolution and Diversity of Semaphorins and Plexins in Choanoflagellates. Genome Biol Evol. 2021; 13:evab035.
Pen I, Flatt T. Asymmetry, division of labourand the evolution of ageing in multicellularorganisms. Phil. Trans. R. Soc. 2021;376:20190729.
Yanni D, Jacobeen S, Márquez-Zacarías P,Weitz JS, Ratcliff WC, Yunker PJ. Topologicalconstraints in early multicellularity favorreproductive division of labor. eLife. 2020;9:e54348.
Richter DJ, Fozouni P, Eisen MB, King N. Genefamily innovation, conservation and loss on theanimal stem lineage. Elife. 2018; 7:e34226.
Sebé-Pedrós A, de Mendoza A, Lang BF,Degnan BM, Ruiz-Trillo I. Unexpectedrepertoire of metazoan transcription factors inthe unicellular holozoan Capsasporaowczarzaki. Mol Biol Evol. 2011; 28:1241-54.
King N, Carroll SB. A receptor tyrosine kinasefrom choanoflagellates: molecular insights intoearly animal evolution. Proc. Natl Acad. Sci.USA 2001; 98:15032-7.
Richards GS, Degnan BM. The dawn ofdevelopmental signaling in the metazoa. ColdSpring Harb Symp Quant Biol. 2009; 74:81-90.
Rennert J, Coffman JA, Mushegian AR,Robertson AJ. The evolution of Runx genes I. Acomparative study of sequences fromphylogenetically diverse model organisms.BMC Evol Biol. 2003; 3:4.
Newton AH, Pask AJ. Evolution and expansionof the RUNX2 QA repeat corresponds with theemergence of vertebrate complexity. CommunBiol. 2020; 3:771.
King N, Westbrook M, Young S, et al. Thegenome of the choanoflagellate Monosigabrevicollis and the origin of metazoans. Nature2008; 451:783-8.