2022, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2022; 25 (1)
Subproducto de nanche (Byrsonima crassifolia): alternativa para la biosorción del cromo hexavalente
Sanchez-Silva JM, González-Estrada RR, Blancas-Benítez FJ, Fonseca-Cantabrana Á
Idioma: Español
Referencias bibliográficas: 34
Paginas: 1-8
Archivo PDF: 299.22 Kb.
RESUMEN
En el presente estudio se investigó la biosorción del cromo hexavalente [Cr (VI)] utilizando un subproducto del nanche
(
Byrsonima crassifolia) en soluciones acuosas mediante el método batch, se evaluaron parámetros como el pH de la solución,
concentración inicial del Cr (VI), dosis del adsorbente, tamaño de la partícula y tiempo de contacto. Los resultados obtenidos
demostraron que existe una mayor remoción del Cr (VI) con un pH ácido en la solución, utilizando un tamaño de partícula ‹ 2.00
mm y aumentando la dosis del adsorbente en la biosorción batch, además se obtuvo una remoción total del Cr (VI) bajo los siguientes
parámetros: 50 mg /L de Cr (VI), 1 g de adsorbente/30 mL, pH: 2.0, tamaño de la partícula entre 2.00–2.38 mm y un tiempo de
contacto de una hora. A partir del ajuste de los modelos cinéticos se determinó que el modelo Pseudo-segundo orden describe mejor
la cinética de la adsorción. En general, el subproducto del nanche puede considerarse un adsorbente con la capacidad de remover
al Cr (VI) de soluciones acuosas.
REFERENCIAS (EN ESTE ARTÍCULO)
Aghababai B., B. & Esmaeili, A. (2020). Biosorption, an efficientmethod for removing heavy metals from industrial effluents:A Review. Environmental Technology & Innovation, 17,100503. DOI:10.1016/j.eti.2019.100503
Al-Homaidan, A. A., Al-Qahtani, H. S., Al-Ghanayem, A.,Ameen, F. & Ibraheem, B. M. (2018). Potential use of greenalgae as a biosorbent for hexavalent chromium removal fromaqueous solutions. Saudi Journal of Biological Sciences,25(8), 1733-1738. DOI:10.1016/j.sjbs.2018.07.011
Al-Qahtani, K. M. (2016). Water purification using differentwaste fruit cortexes for the removal of heavy metals.Journal of Taibah University for Science, 10(5), 700-708.DOI:10.1016/j.jtusci.2015.09.001
APHA-AWWA-WEF. (2012). Standar Methods for theExamination of Water and Wastewater (17 ed.). USA:Diaz de Santos.
Beksissa, R., Tekola, B., Ayala, T. & Dame, B. (2021).Investigation of the adsorption performance of acid treatedlignite coal for Cr (VI) removal from aqueous solution.Environmental Challenges, 4, 100091. DOI:10.1016/j.envc.2021.100091
Bernal-Jácome, L. A., Olvera-Izaguirre, L., Gallegos-García,M., Delgado-Delgado, R. & Espinosa-Rodríguez,M. Á. (2020). Adsorption of Lead (II) from AqueousSolution Using Adsorbents Obtained from Nanche Stone(Byrsonima crassifolia). Journal of the Mexican ChemicalSociety, 64(4), 301-315. DOI:10.29356/jmcs.v64i4.1201
Enniya, I., Rghioui, L. & Jourani, A. (2018). Adsorption ofhexavalent chromium in aqueous solution on activatedcarbon prepared from apple peels. Sustaintable Chemistryand pharmacy, 7, 9-16. DOI:10.1016/j.scp.2017.11.003
Flores-Garnica, J. G., Morales-Barrera, L., Pineda-Camacho,G. & Cristiani-Urbina, E. (2013). Biosorption of Ni(II)from aqueous solutions by Litchi chinensis seeds.Bioresource Technology, 136, 635-643. DOI:10.1016/j.biortech.2013.02.059
Garg, U. K., Kaur, M. P., Garg, V. k., Sud, D. (2007). Removal ofhexavalent chromium from aqueous solution by agriculturalwaste biomass. Journal of Hazardous Materials, 140(1-2),60-68. DOI:10.1016/j.jhazmat.2006.06.056
Ghaneian, M. T., Bhatnagar, A., Ehrampoush, M. H., Amrollahi,M., Jamshidi, B., Dehvari, M. & Taghavi, M. (2017).Biosorption of hexavalent chromium from aqueoussolution onto pomegranate seeds: kinetic modelingstudies. International Journal of Environmental Scienceand Technology, 14(2). 331-340. DOI:10.1007/s13762-016-1216-8
Ghimire, N. K., Inoue, K., Yamaguchi, H., Makino, K. &Miyajima, T. (2003). Adsorptive separation of arsenateand arsenate anions from aqueous medium by orangewaste. Water Research, 37(20), 4945-4953. DOI:10.1016/j.watres.2003.08.029
Gisi, S. d., Lofrano, G., Grassi, M. & Notarnicola, M. (2016).Characteristics and adsorption capacities of low-costsorbents for wastewater treatment: A review. SustainableMaterials and Technologies, 9, 10-40. DOI:10.1016/j.susmat.2016.06.002
Greene, B., Henzl, M., Hosea, J. & Darnall, D. (1986).Elimination of Bicarbonate Intederence in the Bindingof U(Vl) in Mill-Waters to Freeze-dried Chlorellavulgaris. Biotechnology and Bioengineering, 18, 764-767.DOI:10.1002/bit.260280519
Hospodarova, V., Singovszka, E., & Stevulova, N. (2018).Characterization of Cellulosic Fibers by FTIR Spectroscopyfor Their Further Implementation to Building Materials.American Journal of Analytical Chemistry, 9(6), 303-310.DOI:10.4236/ajac.2018.96023
Javanbakht, V., Alavi Amir, S. & Zilouei, H. (2014). Mechanismsof heavy metal removal using microorganisms asbiosorbent. Water Science & Technology, 69(9), 1775-1787.DOI:10.2166/wst.2013.718
Jobby, R., Jha, P., Yadav Kumar, A. & Desai, N. (2018).Biosorption and biotransformation of hexavalent Chromium[Cr (VI)]: A comprehensive review. Chemosphere, 207,255-266. DOI:10.1016/j.chemosphere.2018.05.050
Leyva-Ramos, R., Díaz-Flores, P. E., Guerrero Coronado, R. M.,Mendiza Barrón, J. & Aragón Piña, A. (2004). Adsorciónde Cd(II) en solución acuosa sobre diferentes tipos de fibrasde carbón activado. Revista de la Sociedad Química deMéxico, 48, 196-202.
Lingamdinne, L. P., Yang, J.-K., Chang, Y.-Y. & Koduru,J. R. (2016). Low-cost magnetized Lonicera japonicaflower biomass for the sorption removal of heavymetals. Hydrometallurgy, 165, 81-89. DOI:10.1016/j.hydromet.2015.10.022
Liu, C., Fiol, N., Poch, J. & Villaescusa, I. (2016). A newtechnology for the treatment of chromium electroplatingwastewater based on biosorption. Journal of WaterProcess Engineering, 11. 143-151. DOI: 10.1016/j.jwpe.2016.05.002
Luiz da Rocha Ferreira, G., Vendruscolo, F. & AntoniosiFilho, N. R. (2019). Biosorption of hexavalent chromiumby Pleurotus ostreatus. Heliyon, 5(3). DOI:10.1016/j.heliyon.2019.e01450
Mohanty, K., Jha, M., Meikap, B. & Biswas, M. (2005). Removalofchromium (VI) from dilute aqueous solutions by activatedcarbon developed from Terminalia arjuna nuts activatedwith zinc chloride. Chemical Engineering Science, 60(11),3049-3059. DOI:10.1016/j.ces.2004.12.049
Monroy Figueroa, J., Mendoza Castillo, D., Bonilla Petriciolet,A. & Pérez Cruz, M. (2014). Chemical modification ofBysonima crassifolia with citric acid for the competitivesorption of heavy metals from water. International Journalof Environmental Science and Technology, 12(9), 2867-2880. DOI:10.1007/s13762-014-0685-x
Moussavi, G. & Barikbin, B. (2010). Biosorption ofchromium(VI) from industrial wastewater onto pistachiohull waste biomass. Chemical Engineering Journal, 162(3),893-900. DOI:10.1016/j.cej.2010.06.032
Naja, G. & Volesky, B. (2011). Chapter 3: The Mechanismof Metal Cation and Anion Biosorption. En P. kotrba, M.Mackova & T. Macek, Microbial Biosorption of Metals,19-58. Springer. DOI:10.1007/978-94-007-0443-5
Nameni, M., Moghadam, A. & Arami, M. (2008). Adsorptionof hexavalent chromium from aqueous solutions by wheatbran. International Journal of Environmental Science &Technology, 5(2), 161-168. DOI:10.1007/BF03326009
Pehlivan, E. & Altun, T., (2008). Biosorption of chromium(VI)ion from aqueous solutions using walnut, hazelnut andalmond shell. Journal of Hazardous Materials, 155(1-2),378-384. DOI: 10.1016/j.jhazmat.2007.11.071
Owalude, S. O. & Tella, A. C. (2016). Removal of hexavalentchromium from aqueous solutions by adsorption onmodified groundnut hull. Beni-Suef University Journal ofBasic and Applied Sciences, 5(4), 377-388. DOI:10.1016/j.bjbas.2016.11.005
Ramirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez,E. & Acelas, N. (2020). Removal of Cr (VI) from anaqueous solution using an activated carbon obtained fromteakwood sawdust: Kinetics, equilibrium, and densityfunctional theory calculations. Journal of EnvironmentalChemical Engineering, 8(2), 103702. DOI:10.1016/j.jece.2020.103702
Saha, G. C., Hoque, M. U., Miah, M. A., Holze, R.,Chowdhury, D. A., Khandaker, S. & Chowdhury, S. (2017).Biosorptive removal of lead from aqueous solutions ontoTaro (Colocasia esculenta (L.) Schott) as a low costbioadsorbent: Characterization, equilibria, kinetics andbiosorption-mechanism studies. Journal of EnvironmentalChemical Engineering, 5(3), 2151-2162. DOI:10.1016/j.jece.2017.04.013
Selvi, K., Pattabhi, S. & Kadirvelu, K. (2001). Removal ofCr(VI) from aqueous solution by adsorption onto activatedcarbon. Bioresource Technology, 80(1), 87-89. DOI:10.1016/S0960-8524(01)00068-2
SIAP. (Marzo de 2022). Servicio de Informacion Agroalimentariay Pesquera. Cierre de la producción agrícola 2019.Obtenido de https://nube.siap.gob.mx/cierreagricola/
Sumathi, K. M. S., Mahimairaja, S. & Naidu, R. (2005). Useof low-cost biological wastes and vermiculite for removalchromium from tannery effluent. Bioresource Technology,96(3), 309-316. DOI:10.1016/j.biortech.2004.04.015
Ucun, H., Bayhan, Y., Kaya, Y., Cakici, A. & Algur, O.(2002). Biosorption of chromium(VI) from aqueoussolution by cone biomass of Pinus sylvestris. BioresourceTechnology, 85(2), 155-158. DOI:10.1016/S0960-8524(02)00086-X
USEPA, U. S. (2007). Framework for Metals Risk Assessment.Washington.