2023, Número 3
<< Anterior
Cardiovasc Metab Sci 2023; 34 (3)
Infarto de miocardio con arterias coronarias no obstructivas e isquemia de arterias coronarias no obstructivas, recomendaciones de COMECITE
Olvera-Ruiz R, Moguel-Ancheita R, Facundo-Bazaldua S, Lozoya-Morales JJ, Ramos-Cházaro E, Arce-Piña LA, Muñoz-Beltrán LG, Buenfil-Medina JC, Victoria-Nandayapa JR, Bautista-López GR, Olivares-Asencio CA
Idioma: Inglés [English version]
Referencias bibliográficas: 92
Paginas: 127-141
Archivo PDF: 299.03 Kb.
RESUMEN
El infarto y la isquemia del miocardio sin lesiones coronarias obstructivas (MINOCA, INOCA, por sus siglas en inglés) son conceptos controvertidos. Una lesión no obstructiva ≤ 50% implica la presencia de aterosclerosis que puede complicarse con ruptura o erosión de placa y trombosis presentes en los síndromes coronarios agudos, los cuales son tiempo dependientes y no fácilmente detectables por imagen intravascular. El mayor registro de MINOCA es el sueco, que reportó 9,092 pacientes utilizando angiografía coronaria únicamente, sin imagen intravascular, lo que deja poco claro si hubo disección, erosión o ruptura de placa; así como tampoco especifica la presencia de enfermedad de Takotsubo, miocarditis o cardiomiopatía. El diagnóstico de MINOCA debe tener elevación de marcadores o enzimas cardiacas, con o sin cambios electrocardiográficos y anomalías en la movilidad segmentaria, angiografía coronaria e imagen intravascular. INOCA debe tener un estudio inductor de isquemia positivo, angiografía coronaria, estudio fisiológico coronario hiperémico con la determinación del flujo de reserva fraccional (FFR, por sus siglas en inglés) y el flujo de reserva coronaria (CFR, por sus siglas en inglés) para el diagnóstico de certeza.
REFERENCIAS (EN ESTE ARTÍCULO)
Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available in: https://training.cochrane.org/handbook/current/chapter-i
Shea BJ, Reeves BC, Wells G et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017; 358: j4008.
Thangaratinam S, Redman CWE. The Delphi technique. Obstet Gynaecol. 2005; 7: 120-125.
Defining the role of authors and contributors. Available in: http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
Agewall S, Beltrame JF, Reynolds HR et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur Heart J. 2017; 38 (3): 143-153.
Kunadian V, Chieffo A, Camici PG et al. An EAPCI Expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology working group on coronary pathophysiology & microcirculation endorsed by coronary vasomotor disorders international study group. European Heart Journal. 2020; 41 (37): 3504-3520. Available in: https://doi.org/10.1093/eurheartj/ehaa503
Gue YX, Kanji R, Gati S, Gorog D. MI with non-obstructive coronary artery presenting with STEMI: a review of incidence, aetiology, assessment and treatment. Eur Cardiol. 2020; 15: e20. doi: https://doi.org/10.15420/ecr.2019.13.
Reynolds HR, Diaz A, Cyr DD et al. ISCHEMIA research group. ischemia with nonobstructive coronary arteries: insights from the ISCHEMIA trial. JACC Cardiovasc Imaging. 2023; 16 (1): 63-74. doi: 10.1016/j.jcmg.2022.06.015.
Hansen B, Holtzman JN, Juszczynski C et al. Ischemia with no obstructive arteries (INOCA): a review of the prevalence, diagnosis and management, current problems in cardiology. 2023; 48 (1): 101420. Available in: https://doi.org/10.1016/j.cpcardiol.2022.101420
Hanna EB, Glancy DL. ST-segment elevation: differential diagnosis, caveats. Cleve Clin J Med. 2015; 82 (6): 373-384.
Collet JF, Thiele H, Barbato E et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart Journal. 2021; 42: 1289-1367.
Katrukha IA, Katrukha AG. Myocardial injury and the release of troponins I and T in the blood of patients. Clin Chem. 2021; 67 (1): 124-130.
Vranken NPA, Pustjens TFS, Kolkman E et al. MINOCA: The caveat of absence of coronary obstruction in myocardial infarction. Int J Cardiol Heart Vasc. 2020; 29: 100572. Available in: https://doi.org/10.1016/j.ijcha.2020.100572
Chen R, Liu C, Zhou P et al. Prognostic Value of D-dimer in patients with acute coronary syndrome treated by percutaneous coronary intervention: a retrospective cohort study. Thromb J. 2021; 19 (1): 30. doi: 10.1186/s12959-021-00281-y.
Heeschen C, Hamm CW, Mitrovic V, Lantelme N, White HD. N-Terminal Pro-B-type natriuretic peptide levels for dynamic risk stratification of patients with acute coronary syndromes. Circulation. 2004; 110: 3206-3212.
Sicari R, Nihoyannopoulos P, Evangelista A et al. Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr. 2008; 9 (4): 415-437. doi: 10.1093/ejechocard/jen175.
Schroder J, Prescott E. Doppler echocardiography assessment of coronary microvascular function in patients with angina and no obstructive coronary artery disease. Cardiovasc. Med. 2021; 8: 723542. doi: 10.3389/fcvm.2021.723542.
Wilansky S. Echocardiography in the assessment of complications of myocardial infarction . Tex Heart Inst J. 1991; 18: 237-242.
Feigenbaum H, Armstrong WF, Ryan T. Echocardiography and coronary artery disease, Feigenbaum's echocardiography. Chapter 15, 8th ed, Philadelphia, 2019; 1429-1579.
Edvardsen T, Asch FM, Davidson B et al. Non-invasive imaging in coronary syndromes: recommendations of the European Association of Cardiovascular Imaging and the American Society of Echocardiography, in collaboration with the American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. Eur Heart J Cardiovasc Imaging. 2022; 23 (2): e6-e33.
Fathi R, Haluska B, Isbel N et al. The relative importance of vascular structure and function in predicting cardiovascular events. J Am Coll Cardiol. 2004; 43: 616-623.
Patel AR, Bamberg F, Branch K et al. Society of cardiovascular computed tomography expert consensus document on myocardial computed tomography perfusion imaging. J Cardiovasc Comput Tomogr. 2020; 14: 87-100.
Chang S, Han K, Youn JC et al. Utility of dual-energy ct-based monochromatic imaging in the assessment of myocardial delayed enhancement in patients with cardiomyopathy. Radiology. 2018; 287 (2): 442-451. doi: 10.1148/radiol.2017162945.
Indorkar R, Kwong RY, Romano S et al. Global coronary flow reserve measured during stress cardiac magnetic resonance imaging is an independent predictor of adverse cardiovascular events. JACC Cardiovasc Imaging. 2019; 12 (8 Pt 2): 1686-1695. doi: 10.1016/j.jcmg.2018.08.018.
Zeng M, Zhao C, Bao X et al. Clinical characteristics and prognosis of MINOCA caused by atherosclerotic and nonatherosclerotic mechanisms assessed by OCT. JACC Cardiovasc Imaging. 2023; 16 (4): 521-532. doi: 10.1016/j.jcmg.2022.10.023.
Alasnag M, Jelani QUA, Johnson TW et al. The role of imaging for MINOCA (myocardial infarction with no obstructive coronary artery disease): a review of literature and current perspectives. Curr Cardiovasc Imaging Rep. 2020; 13: 21. Available in: https://doi.org/10.1007/s12410-020-09540-4
Colin B. Fractional flow reserve, coronary flow reserve and the index of microvascular resistance in clinical practice Radcliffe Cardiology.com, February 2014. Available in: https://www.radcliffecardiology.com/articles/fractional-flow-reserve-coronary-flow-reserve-and-index-microvascular-resistance-clinical#CitationPopup
Ford TJ, Ong P, Sechtem U, Beltrame J, Camici PG et al. COVADIS Study Group. Assessment of vascular dysfunction in patients without obstructive coronary artery disease: why, how, and when. JACC Cardiovasc Interv. 2020; 13 (16): 1847-1864. doi: 10.1016/j.jcin.2020.05.052.
Knuuti J, Wijns W, Saraste A et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020; 41 (3): 407-477. doi: 10.1093/eurheartj/ehz425. Erratum in: Eur Heart J. 2020; 41 (44): 4242.
Greenberg NT, VanDongen NS, Gioscia-Ryan RA et al. Vascular endothelial dysfunction induced by a western-style diet can be transferred via fecal microbiota transplant in mice. The FASEB Journal. 2020; 34: 1-1. https://doi.org/10.1096/fasebj.2020.34.s1.07405
Trikha R, Lee DM, Ecton KE, Wrigley SD et al. Endothelial dysfunction is transferable from humans to germ-free mice via fecal microbiota transplantation. The FASEB Journal. 2020; 34: 1-1. Available in: https://doi.org/10.1096/fasebj.2020.34.s1.00735
Maiuolo J, Carresi C, Gliozzi M et al. The contribution of gut microbiota and endothelial dysfunction in the development of arterial hypertension in animal models and in humans. Int J Mol Sci. 2022; 23 (7): 3698. Available in: https://doi.org/10.3390/ijms23073698
Tsigalou C, Paraschaki A, Karvelas A, Kantartzi K et al. Gut microbiome and Mediterranean diet in the context of obesity. Current knowledge, perspectives and potential therapeutic targets. Metabol Open. 2021; 9: 100081. Available in: https://doi.org/10.1016/j.metop.2021.100081
Merra G, Noce A, Marrone G et al. Influence of mediterranean diet on human gut microbiota. Nutrients. 2020; 13 (1): 7. doi: 10.3390/nu13010007.
Nagpal R, Shively CA, Register TC, Craft S, Yadav H. Gut microbiome-Mediterranean diet interactions in improving host health. F1000Res. 2019; 8: 699. doi: 10.12688/f1000research.18992.1.
Fatima K, Rashid AM, Memon UAA et al. Mediterranean diet and its effect on endothelial function: a meta-analysis and systematic review. Ir J Med Sci. 2023; 192: 105-113. Available in: https://doi.org/10.1007/s11845-022-02944-9
Ceriello A, Esposito K, La Sala L et al. The protective effect of the Mediterranean diet on endothelial resistance to GLP-1 in type 2 diabetes: a preliminary report. Cardiovasc Diabetol. 2014; 13: 140. Available in: https://doi.org/10.1186/s12933-014-0140-9
Shafi S, Ansari HR, Bahitham W, Aouabdi S. The impact of natural antioxidants on the regenerative potential of vascular cells. Front Cardiovasc Med. 2019; 6: 28. doi: 10.3389/fcvm.2019.00028.
Rustia AJ, Paterson JS, Best G, Sokoya EM. Microbial disruption in the gut promotes cerebral endothelial dysfunction. Physiol Rep. 2021; 9 (21): e15100. doi: 10.14814/phy2.15100.
Moguel-Ancheita R, Samaniego V. Myocardial infarction as a consequence of atherosclerosis. Cardiovasc Metab Sci. 2021; 32 (s3): s247-s252. Available in: https://dx.doi.org/10.35366/100806
Trikha SRJ, Lee DM, Ecton KE et al. Transplantation of an obesity-associated human gut microbiota to mice induces vascular dysfunction and glucose intolerance. Gut Microbes. 2021; 13 (1): 1940791. doi: 10.1080/19490976.2021.1940791.
Kim ES, Yoon BH, Lee SM et al. Fecal microbiota transplantation ameliorates atherosclerosis in mice with C1q/TNF-related protein 9 genetic deficiency. Exp Mol Med. 2022; 54: 103-114. Available in: https://doi.org/10.1038/s12276-022-00728-w
Leslie JL, Annex BH. The microbiome and endothelial function. Circ Res. 2018; 123 (9): 1015-1016. doi: 10.1161/CIRCRESAHA.118.313813.
Paoli A, Mancin L, Bianco A et al. Ketogenic diet and microbiota: friends or enemies? Genes. 2019; 10 (7): Available in: https://doi.org/10.3390/genes10070534
Attaye I, van Oppenraaij S, Warmbrunn MV, Nieuwdorp M. The role of the gut microbiota on the beneficial effects of ketogenic diets. Nutrients. 2021; 14 (1): 191. doi: 10.3390/nu14010191.
Pavlidou E, Fasoulas A, Mantzorou M, Giaginis C. Clinical evidence on the potential beneficial effects of probiotics and prebiotics in cardiovascular disease. Int J Mol Sci. 2022; 23 (24): 15898. Available in: https://doi.org/10.3390/ijms232415898
Szulinska M, Loniewski I, Skrypnik K et al. Multispecies probiotic supplementation favorably affects vascular function and reduces arterial stiffness in obese postmenopausal women—A 12-week placebo-controlled and randomized clinical study. Nutrients. 2018; 10 (11). Available in: https://doi.org/10.3390/nu10111672
Mahdavi-Roshan M, Salari A, Kheirkhah J, Ghorbani Z. The effects of probiotics on inflammation, endothelial dysfunction, and atherosclerosis progression: a mechanistic overview. Heart Lung Circ. 2022; 31 (5): e45-e71. doi: 10.1016/j.hlc.2021.09.006.
Bressa C, Bailén-Andrino M, Pérez-Santiago J et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One. 2017; 12 (2): e0171352. Available in: https://doi.org/10.1371/journal.pone.0171352
O'Toole PW, Shiels PG. The role of the microbiota in sedentary lifestyle disorders and aging: lessons from the animal kingdom. J Intern Med. 2020; 287 (3): 271-282. doi: 10.1111/joim.13021.
Cataldi S, Bonavolontà V, Poli L et al. The relationship between physical activity, physical exercise, and human gut microbiota in healthy and unhealthy subjects: a systematic review. Biology. 2022; 11(3):479. Available in: https://doi.org/10.3390/biology11030479
Magzal F, Shochat T, Haimov I et al. Increased physical activity improves gut microbiota composition and reduces short-chain fatty acid concentrations in older adults with insomnia. Sci Rep. 2022; 12: 2265. Available in: https://doi.org/10.1038/s41598-022-05099-w
Nasser S, Vialichka V, Biesiekierska M, Balcerczyk A, Pirola L. Effects of ketogenic diet and ketone bodies on the cardiovascular system: concentration matters. World J Diabetes. 2020; 11 (12): 584-595. Available in: A https://doi.org/10.4239/wjd.v11.i12.584
Yurista SR, Chong CR, Badimon JJ et al. Therapeutic potential of ketone bodies for patients with cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2021; 77 (13): 1660-1669. doi: 10.1016/j.jacc.2020.12.065.
Mohammadifard N, Haghighatdoost F, Rahimlou M et al. The effect of ketogenic diet on shared risk factors of cardiovascular disease and cancer. Nutrients. 2022; 14 (17): 3499. Available in: https://doi.org/10.3390/nu14173499
Al-Zaid NS, Dashti HM, Mathew TC, Juggi JS. Low carbohydrate ketogenic diet enhances cardiac tolerance to global ischaemia. Acta Cardiol. 2007; 62 (4): 381-9. doi: 10.2143/AC.62.4.2022282.
Yurista SR, Matsuura TR, Silljé HHW et al. Ketone ester treatment improves cardiac function and reduces pathologic remodeling in preclinical models of heart failure. Circ Heart Fail. 2021; 14 (1): e007684. doi: 10.1161/CIRCHEARTFAILURE.120.007684.
Zhang W, Guo X, Chen L et al. Ketogenic diets and cardio-metabolic diseases. Front Endocrinol (Lausanne). 2021; 12: 753039. doi: 10.3389/fendo.2021.753039.
Deledda A, Palmas V, Heidrich V, Fosci M, Lombardo M, Cambarau G, Lai A, Melis M, Loi E, Loviselli A, Manzin A, Velluzzi F. Dynamics of gut microbiota and clinical variables after ketogenic and Mediterranean diets in drug-naïve patients with type 2 diabetes mellitus and obesity. Metabolites. 2022; 12 (11): 1092. Available in: https://doi.org/10.3390/metabo12111092
Bove KB, Nilsson M, Pedersen LR et al. Comprehensive treatment of microvascular angina in overweight women - a randomized controlled pilot trial. PLoS One. 2020; 15 (11): e0240722. doi: 10.1371/journal.pone.0240722.
He CJ, Zhu CY, Zhu YJ et al. Effect of exercise-based cardiac rehabilitation on clinical outcomes in patients with myocardial infarction in the absence of obstructive coronary artery disease (MINOCA). Int J Cardiol. 2020; 315: 9-14. doi: 10.1016/j.ijcard.2020.05.019.
Streese L, Guerini C, Bühlmayer L et al. Physical activity and exercise improve retinal microvascular health as a biomarker of cardiovascular risk: a systematic review. Atherosclerosis. 2020; 315: 33-42. doi: 10.1016/j.atherosclerosis.2020.09.017.
Hurley DM, Williams ER, Cross JM et al. Aerobic exercise improves microvascular function in older adults. Med Sci Sports Exerc. 2019; 51 (4): 773-781. doi: 10.1249/MSS.0000000000001854.
Schumann CL, Mathew RC, Dean JL et al. Functional and economic impact of INOCA and influence of coronary microvascular dysfunction. JACC Cardiovasc Imaging. 2021; 14 (7): 1369-1379. doi: 10.1016/j.jcmg.2021.01.041.
Li Y, Xu W, Guo L. Anxiety is associated with coronary microvascular dysfunction: results from the CAMADA study. Microcirculation. 2023: e12798. doi: 10.1111/micc.12798.
Sara JDS, Ahmad A, Toya T et al. Anxiety disorders are associated with coronary endothelial dysfunction in women with chest pain and nonobstructive coronary artery disease. J Am Heart Assoc. 2021; 10 (17): e021722. doi: 10.1161/JAHA.121.021722.
Empana JP, Boutouyrie P, Lemogne C, Jouven X, van Sloten TT. Microvascular contribution to late-onset depression: mechanisms, current evidence, association with other brain diseases, and therapeutic perspectives. Biol Psychiatry. 2021; 90 (4): 214-225. doi: 10.1016/j.biopsych.2021.04.012.
Van der Meer RE, Maas AH. The role of mental stress in ischaemia with no obstructive coronary artery disease and coronary vasomotor disorders. Eur Cardiol. 2021; 16: e37. doi: 10.15420/ecr.2021.20.
Cattaneo M, Halasz G, Cattaneo MM et al. The central nervous system and psychosocial factors in primary microvascular angina. Front Cardiovasc Med. 2022; 9: 896042. doi: 10.3389/fcvm.2022.896042.
Cekirdekci EI, Bugan B. Level of anxiety and depression in cardiac syndrome X. Med Princ Pract. 2019; 28 (1): 82-86. doi: 10.1159/000495109.
Toda N, Nakanishi-Toda M. How mental stress affects endothelial function. Pflugers Arch. 2011; 462 (6): 779-794. doi: 10.1007/s00424-011-1022-6.
Lima BB, Hammadah M, Kim JH et al. Association of transient endothelial dysfunction induced by mental stress with major adverse cardiovascular events in men and women with coronary artery disease. JAMA Cardiol. 2019; 4 (10): 988-996. doi: 10.1001/jamacardio.2019.3252.
Sher LD, Geddie H, Olivier L et al. Chronic stress and endothelial dysfunction: mechanisms, experimental challenges, and the way ahead. Am J Physiol Heart Circ Physiol. 2020; 319 (2): H488-H506. doi: 10.1152/ajpheart.00244.2020.
Waclawovsky AJ, de Brito E, Smith L et al. Endothelial dysfunction in people with depressive disorders: a systematic review and meta-analysis. J Psychiatr Res. 2021; 141: 152-159. doi: 10.1016/j.jpsychires.2021.06.045.
Liou YJ, Chen MH, Hsu JW et al. Associations between increased circulating endothelial progenitor cell levels and anxiety/depressive severity, cognitive deficit and function disability among patients with major depressive disorder. Sci Rep. 2021; 11: 18221. Available in: https://doi.org/10.1038/s41598-021-97853-9
Serrani Azcurra D. Marcadores precoces de disfunción endotelial en trastorno de estrés postraumático. Rol en la aterogénesis [Early markers of endothelial dysfunction posttraumatic stress disorder. Role in atherogenesis]. Rev Psiquiatr Salud Ment. 2010; 3 (4): 128-136. doi: 10.1016/j.rpsm.2010.09.004.
Jalali Z, Khademalhosseini M, Soltani N et al. Smoking, alcohol and opioids effect on coronary microcirculation: an update overview. BMC Cardiovasc Disord. 2021; 21: 185. Available in: https://doi.org/10.1186/s12872-021-01990-y
Lindahl B, Baron T, Erlinge D et al. Medical therapy for secondary prevention and long-term outcome in patients with myocardial infarction with nonobstructive coronary artery disease. Circulation. 2017; 135 (16): 1481-1489. doi: 10.1161/CIRCULATIONAHA.116.026336.
Ciliberti G, Verdoia M, Merlo M et al. Pharmacological therapy for the prevention of cardiovascular events in patients with myocardial infarction with non-obstructed coronary arteries (MINOCA): insights from a multicentre national registry. Int J Cardiol. 2021; 327: 9-14. doi: 10.1016/j.ijcard.2020.11.040.
Turgeon RD, Pearson GJ, Graham MM. Pharmacologic treatment of patients with myocardial ischemia with no obstructive coronary artery disease. Am J Cardiol. 2018; 121 (7): 888-895. doi: 10.1016/j.amjcard.2017.12.025.
Beltrame JF, Tavella R, Jones D, Zeitz C. Management of ischaemia with non-obstructive coronary arteries (INOCA). BMJ. 2021; 375: e060602. doi: 10.1136/bmj-2021-060602.
Iqbal AM, Lopez RA, Hai O. Antiplatelet medications. [Updated 2022 Sep 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available in: https://www.ncbi.nlm.nih.gov/books/NBK537062/
Ortega-Paz L, Galli M, Capodanno D, Brugaletta S, Angiolillo DJ. The role of antiplatelet therapy in patients with MINOCA. Front Cardiovasc Med. 2022; 8: 821297. doi: 10.3389/fcvm.2021.821297.
Zeitouni M, Kerneis M, Nafee T, Collet JP, Silvain J, Montalescot G. Anticoagulation in acute coronary syndrome-state of the art. Prog Cardiovasc Dis. 2018; 60 (4-5): 508-513. doi: 10.1016/j.pcad.2018.01.004.
Villablanca PA, Holmes D Jr, Mohananey D et al. Direct Xa inhibitors in addition to antiplatelet therapy in acute coronary syndrome: meta-analysis of randomized trials. Coron Artery Dis. 2017; 28 (5): 395-405. doi: 10.1097/MCA.0000000000000485.
López-Sendón J, Swedberg K, McMurray J et al. Expert consensus document on beta-adrenergic receptor blockers. Eur Heart J. 2004; 25 (15): 1341-1362. doi: 10.1016/j.ehj.2004.06.002.
Geng N, Ren L, Xu L et al. Clinical outcomes of nicorandil administration in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2021; 21: 488. Available in: https://doi.org/10.1186/s12872-021-02301-1
Rayner-Hartley E, Sedlak T. Ranolazine: a contemporary review. J Am Heart Assoc. 2016; 5 (3): e003196. doi: 10.1161/JAHA.116.003196.
Chen C, Kaur G, Mehta PK, Morrone D, Godoy LC, Bangalore S, Sidhu MS. Ivabradine in cardiovascular disease management revisited: a review. Cardiovasc Drugs Ther. 2021; 35 (5): 1045-1056. doi: 10.1007/s10557-020-07124-4.
Dézsi CA. Trimetazidine in practice: review of the clinical and experimental evidence. Am J Ther. 2016; 23 (3): e871-879. doi: 10.1097/MJT.0000000000000180.
Daiber A, Münzel T. Organic nitrate therapy, nitrate tolerance, and nitrate-induced endothelial dysfunction: emphasis on redox biology and oxidative stress. Antioxid Redox Signal. 2015; 23 (11): 899-942.
Denardo SJ, Wen X, Handberg EM et al. Effect of phosphodiesterase type 5 inhibition on microvascular coronary dysfunction in women: a women's ischemia syndrome evaluation (WISE) ancillary study. Clin Cardiol. 2011; 34: 483-487. doi: 10.1002/clc.20935.