2023, Número 3
<< Anterior Siguiente >>
Cardiovasc Metab Sci 2023; 34 (3)
Fundamentos de la hemoglobina glicada. Valor y ventajas en la práctica clínica
Camarena-Hidalgo MS, Meaney E, Ortiz-Vilchis P
Idioma: Inglés [English version]
Referencias bibliográficas: 59
Paginas: 119-126
Archivo PDF: 235.24 Kb.
RESUMEN
La prueba de hemoglobina glucosilada (HbA1c) es una herramienta clínica útil, económica y práctica para el control glucémico a largo plazo en pacientes con diabetes mellitus (DM). Históricamente, desde 1955, la HbA1c fue descrita por primera vez por Kunkel y Wallenius como una fracción menor de la hemoglobina humana. Sin embargo, hasta la década de los 70, la molécula fue reconocida como un marcador de control glucémico. La HbA1c es una proteína conjugada (heteroproteína, hemoglobina-glucosa) formada a través de un proceso no enzimático y postraduccional llamado glicación (reacción de Maillard) como un producto estable de Amadori. Si la reacción continúa, los resultados finales son productos irreversibles llamados productos finales glicación (AGE, por sus siglas en inglés). Los AGE son responsables de modificar las proteínas de todos los tejidos y contribuyen a las reacciones inflamatorias mediadas por el receptor AGE y las complicaciones de la DM. También, los niveles de HbA1c inferiores a 7% se han asociado con la reducción de lesiones microvasculares y macrovasculares. Una adecuada evaluación y monitorización rutinaria de los niveles de HbA1c permitiría un adecuado control glucémico y ayudaría a reducir el riesgo de futuras complicaciones.
REFERENCIAS (EN ESTE ARTÍCULO)
Syed IA. Glycated haemoglobin; past, present, and future are we ready for the change. J Pak Med Assoc. 2011; 61 (4): 383-388.
Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights. 2016; 11: 95-104.
Kunkel HG, Wallenius G. New hemoglobin in normal adult blood. Science. 1955; 122 (3163): 288.
Allen DW, Schroeder W, Balog J. Observations on the chromatographic heterogeneity of normal adult and fetal human hemoglobin: a study of the effects of crystallization and chromatography on the heterogeneity and isoleucine content. J Am Chem Soc. 1958; 80 (7): 1628-1634.
Campuzano-Maya G, Latorre-Sierra G. La HbA1c en el diagnóstico y en el manejo de la diabetes. Medicina & Laboratorio. 2010; 16 (5-6): 211-241.
Huisman TH, Sydenstricker VP. Difference in gross structure of two electrophoretically identical 'minor' haemoglobin components. Nature. 1962; 193: 489-491.
Rahbar S, Blumenfeld O, Ranney HM. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem Biophys Res Commun. 1969; 36 (5): 838-843.
Rahbar S. The discovery of glycated hemoglobin: a major event in the study of non-enzymatic chemistry in biological systems. Ann N Y Acad Sci. 2005; 1043: 9-19.
Saudek CD, Brick JC. The clinical use of hemoglobin A1c. J Diabetes Sci Technol. 2009; 3 (4): 629-634.
Perutz MF. Structure and mechanism of haemoglobin. Br Med Bull. 1976; 32 (3): 195-208.
Safo MK, Bruno S. Allosteric effectors of hemoglobin: past, present and future. In: Mozzarelli A, Bettati S. Chemistry and biochemistry of oxygen therapeutics: from transfusion to artificial blood. Hoboken, NJ, USA: John Wiley & Sons, Ltd.; 2011. pp. 285-300.
Ahmed MH, Ghatge MS, Safo MK. Hemoglobin: Structure, Function and allostery. Subcell Biochem. 2020; 94: 345-382.
Keren DF, Hedstrom D, Gulbranson R, Ou CN, Bak R. Comparison of Sebia Capillarys capillary electrophoresis with the primus high-pressure liquid chromatography in the evaluation of hemoglobinopathies. Am J Clin Pathol. 2008; 130 (5): 824-831.
Goonasekera HW, Paththinige CS, Dissanayake VHW. Population screening for hemoglobinopathies. Annu Rev Genomics Hum Genet. 2018; 19: 355-380.
Kohne E. Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch Arztebl Int. 2011; 108 (31-32): 532-540.
Barrera-Reyes PK, Tejero ME. Genetic variation influencing hemoglobin levels and risk for anemia across populations. Ann N Y Acad Sci. 2019; 1450 (1): 32-46.
Little RR, Roberts WL. A review of variant hemoglobins interfering with hemoglobin A1c measurement. J Diabetes Sci Technol. 2009; 3 (3): 446-451.
Bracho-Nava M, Stepenka-Alvarez V, Sindas-Villasmil M, Rivas de Casal Y, Bozo de González M, Duran-Mojica A. Hemoglobina glicosilada o hemoglobina glicada, ¿cuál de las dos? Saber. 2015; 27 (4): 521-529.
Gkogkolou P, Bohm M. Advanced glycation end products: Key players in skin aging? Dermatoendocrinol. 2012; 4 (3): 259-270.
Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res. 2009; 8 (2): 754-769.
Kajal A, Bala S, Kamboj S, Sharma N, Saini V. Schiff bases: a versatile pharmacophore. J Catal. 2013; 2013.
Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J. 2003; 375 (Pt 3): 581-592.
Tessier FJ. The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathol Biol (Paris). 2010; 58 (3): 214-219.
Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules. 2022; 12 (4): 542.
Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999; 344 Pt 1(Pt 1):109-116.
Thornalley PJ. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems--role in ageing and disease. Drug Metabol Drug Interact. 2008; 23 (1-2): 125-150.
Thornalley PJ. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol (Noisy-le-grand). 1998; 44 (7): 1013-1023.
Asadipooya K, Uy EM. Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: review of the literature. J Endocr Soc. 2019; 3 (10): 1799-1818.
Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci. 2011; 1243: 88-102.
Egana-Gorrono L, Lopez-Diez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF et al. Receptor for advanced glycation end products (RAGE) and mechanisms and therapeutic opportunities in diabetes and cardiovascular disease: insights from human subjects and animal models. Front Cardiovasc Med. 2020; 7: 37.
Semchyshyn HM. Reactive carbonyl species in vivo: generation and dual biological effects. ScientificWorldJournal. 2014; 2014: 417842.
Zoccali C, Mallamaci F, Tripepi G. AGEs and carbonyl stress: potential pathogenetic factors of long-term uraemic complications. Nephrol Dial Transplant. 2000; 15 Suppl 2: 7-11.
Meaney E, Vela A, Samaniego V, Meaney A, Asbun J, Zempoalteca JC et al. Metformin, arterial function, intima-media thickness and nitroxidation in metabolic syndrome: the mefisto study. Clin Exp Pharmacol Physiol. 2008; 35 (8): 895-903.
Ioannou A, Varotsis C. Modifications of hemoglobin and myoglobin by Maillard reaction products (MRPs). PLoS One. 2017; 12 (11): e0188095.
Bansal P, Nayak P, Sharma B. Understanding glycosylated haemoglobin. JIACM. 2014; 15 (3-4): 220-221.
Gillery P. A history of HbA1c through clinical chemistry and laboratory medicine. Clin Chem Lab Med. 2013; 51 (1): 65-74.
Witczak O, Haugen TB. Glycated or glycosylated? Tidsskr Nor Laegeforen. 2014; 134 (22): 2179.
American Diabetes Association Professional Practice Committee. 6. Glycemic targets: standards of medical care in diabetes-2022. Diabetes Care. 2022; 45 (Suppl 1): S83-S96.
Little RR, Rohlfing CL. HbA1c standardization: background, progress and current issues. Laboratory Medicine. 2009; 40 (6): 368-373.
Diabetes Control and Complications Trial Research Group; Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329 (14): 977-986.
Lenters-Westra E, English E. Evaluating new HbA1c methods for adoption by the IFCC and NGSP reference networks using international quality targets. Clin Chem Lab Med. 2017; 55 (9): 1426-1434.
Goodall I. HbA1c standardisation destination--global IFCC Standardisation. How, why, where and when--a tortuous pathway from kit manufacturers, via inter-laboratory lyophilized and whole blood comparisons to designated national comparison schemes. Clin Biochem Rev. 2005; 26 (1): 5-19.
Weykamp C, John G, Gillery P, English E, Ji L, Lenters-Westra E et al. Investigation of 2 models to set and evaluate quality targets for HbA1c: biological variation and sigma-metrics. Clin Chem. 2015; 61 (5): 752-759.
Rajendran R, Rayman G. Point-of-care blood glucose testing for diabetes care in hospitalized patients: an evidence-based review. J Diabetes Sci Technol. 2014; 8 (6): 1081-1090.
Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Performance of point-of-care testing compared with the standard laboratory diagnostic test in the measurement of HbA1c in indonesian diabetic and nondiabetic subjects. J Diabetes Res. 2020; 2020: 2037565.
Chehregosha H, Khamseh ME, Malek M, Hosseinpanah F, Ismail-Beigi F. A view beyond HbA1c: role of continuous glucose monitoring. Diabetes Ther. 2019; 10 (3): 853-863.
Kovatchev BP. Metrics for glycaemic control - from HbA(1c) to continuous glucose monitoring. Nat Rev Endocrinol. 2017; 13 (7): 425-436.
Chaugule S, Oliver N, Klinkenbijl B, Graham C. An economic evaluation of continuous glucose monitoring for people with type 1 diabetes and impaired awareness of hypoglycaemia within North West London Clinical Commissioning Groups in England. Eur Endocrinol. 2017; 13 (2): 81-85.
Organization WH. Use of glycated haemoglobin (HbA1c) in diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. Geneva: World Health Organization; 2011.
Hussain N. Implications of using HBA1C as a diagnostic marker for diabetes. Diabetol Int. 2015; 7 (1): 18-24.
Committee ADAPP, Committee: ADAPP. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022. Diabetes Care. 2022; 45 (Suppl 1): S17-S38.
Yang CY, Su PF, Hung JY, Ou HT, Kuo S. Comparative predictive ability of visit-to-visit HbA1c variability measures for microvascular disease risk in type 2 diabetes. Cardiovasc Diabetol. 2020; 19 (1): 105.
Khaw KT, Wareham N. Glycated hemoglobin as a marker of cardiovascular risk. Curr Opin Lipidol. 2006; 17 (6): 637-643.
Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomized trial. Lancet. 2010; 376 (9739): 419-430.
Laiteerapong N, Ham SA, Gao Y, Moffet HH, Liu JY, Huang ES et al. The legacy effect in type 2 diabetes: impact of early glycemic control on future complications (the diabetes & aging study). Diabetes Care. 2019; 42 (3): 416-426.
Nathan DM; DCCT/EDIC Research Group. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care. 2014; 37 (1): 9-16.
Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in Diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab. 2016; 20 (4): 546-551.
Ikeda F, Doi Y, Ninomiya T, Hirakawa Y, Mukai N, Hata J et al. Haemoglobin A1c even within non-diabetic level is a predictor of cardiovascular disease in a general Japanese population: the Hisayama Study. Cardiovasc Diabetol. 2013; 12: 164.
Agrawal SN. Glycosylated haemoglobin (HbA1c): An indispensible tool in the management of diabetes mellitus. GJMR. 2018; 18 (C1): 1-5.