2023, Número 2
<< Anterior Siguiente >>
salud publica mex 2023; 65 (2)
Procesos celulares modificados en Aedes aegypti infectados con Wolbachia y la susceptibilidad al virus dengue
López-Ordóñez T, Díaz-Rodarte KI, Torres-Monzón JA, Casas-Martínez M, Danis-Lozano R, Mosso-González C
Idioma: Español
Referencias bibliográficas: 46
Paginas: 136-143
Archivo PDF: 291.73 Kb.
RESUMEN
Objetivo. Analizar la expresión diferencial de proteínas de
Aedes aegypti infectados con
Wolbachia y su asociación con el
ciclo viral del virus dengue (DENV).
Material y métodos.
Se revisó una base de datos de proteínas de
Ae. aegypti infectados
y no infectados con
Wolbachia, cepa wMel y se buscaron
estas en revistas indizadas, que hablaran de la proteína y el
ciclo viral de DENV.
Resultados. La expresión diferencial de
proteínas de los mosquitos durante la infección con
Wolbachia
intervienen en los procesos de entrada, replicación y salida
del DENV.
Conclusiones. Existen cambios en la expresión
de proteínas de células infectadas con
Wolbachia, que son
necesarias para el ciclo de replicación de DENV, explicando
porque algunos mosquitos infectados con
Wolbachia son
refractarios a la infección por DENV.
REFERENCIAS (EN ESTE ARTÍCULO)
Fernández-Salas I, Danis-Lozano R, Casas-Martínez M, Ulloa A, BondJG, Marina CF, et al. Historical inability to control Aedes aegypti as amain contributor of fast dispersal of chikungunya outbreaks in LatinAmerica. Antiviral Res. 2015;124:30-42. https://doi.org/10.1016/j.antiviral. 2015.10.015
Zheng X, Zhang D, Li Y, Yang C, Wu Y, Liang X, et al. Incompatibleand sterile insect techniques combined eliminate mosquitoes. Nature.2019;572(7767):56-61. https://doi.org/10.1038/s41586-019-1407-9
Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebratebiology. Nat Rev Microbiol. 2008;6(10):741-51 [citado 2021 agosto 16,2021]. Disponible en: https://www.nature.com/articles/nrmicro1969
Ahmad NA, Mancini M-V, Ant TH, Martinez J, Kamarul GMR, NazniWA, et al. Wolbachia strain wAlbB maintains high density and dengueinhibition following introduction into a field population of Aedes aegypti.Philos Trans R Soc Lond B Biol Sci. 2021;376(1818):20190809. https://doi.org/10.1098/rstb.2019.0809
Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, et al. Wolbachia inducesreactive oxygen species (ROS)-dependent activation of the Toll pathwayto control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad SciU S A. 2012;109(1):E23-31. https://doi.org/10.1073/pnas.1116932108
Barnard TR, Abram QH, Lin QF, Wang AB, Sagan SM. Molecular determinantsof flavivirus virion assembly. Trends Biochem Sci. 2021;46(5):378-90https://doi.org/10.1016/j.tibs.2020.12.007
Mosso C, Galván-Mendoza IJ, Ludert JE, del Angel RM. Endocyticpathway followed by dengue virus to infect the mosquito cell line C6/36HT. Virology. 2008;378(1):193-9. https://doi.org/10.1016/j.virol.2008.05.012
Randall G. Lipid droplet metabolism during dengue virus infection.Trends Microbiol. 2018;26(8):640-2. https://doi.org/10.1016/j.tim.2018.05.010
Reyes-Ruiz JM, Osuna-Ramos JF, De Jesús-González LA, Hurtado-Monzón AM, Farfan-Morales CN, Cervantes-Salazar M, et al. Isolationand characterization of exosomes released from mosquito cells infectedwith dengue virus. Virus Res. 2019;266:1-14. https://doi.org/10.1016/j.virusres.2019.03.015
Geoghegan V, Stainton K, Rainey SM, Ant TH, Dowle AA, Larson T,et al. Perturbed cholesterol and vesicular trafficking associated withdengue blocking in Wolbachia-infected Aedes aegypti cells. Nat Commun.2017;8(1):1-10. https://doi.org/10.1038/s41467-017-00610-8
Quackenbush J. Microarray data normalization and transformation. NatGenet. 2002;32(Suppl 4):496-501. https://doi.org/10.1038/ng1032
Liu Y, Zhang F, Liu J, Xiao X, Zhang S, Qin C, et al. Transmissionblockingantibodies against mosquito c-type lectins for dengue prevention. PLoS Pathog. 2014;10(2):e1003931. https://doi.org/10.1371/journal.ppat.1003931
Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL,Rodgers MA, et al. Discovery of insect and human dengue virus host factors.Nature. 2009;458(7241):1047-50. https://doi.org/10.1038/nature07967
Carvalho FA, Carneiro FA, Martins IC, Assuncao-Miranda I, FaustinoAF, Pereira RM, et al. Dengue virus capsid protein binding to hepatic lipiddroplets (LD) is potassium ion dependent and is mediated by LD surfaceproteins. J Virol. 2012;86(4):2096-108. https://doi.org/10.1128/JVI.06796-11
Krishnan MN, Sukumaran B, Pal U, Agaisse H, Murray JL, Hodge TW, etal. Rab 5 Is required for the cellular entry of dengue and west nile viruses.J Virol. 2007;81(9):4881-5. https://doi.org/10.1128/JVI.02210-06
Nogalski MT, Chan G, Stevenson EV, Gray S, Yurochko AD. Humancytomegalovirus-regulated paxillin in monocytes links cellular pathogenicmotility to the process of viral entry. J Virol. 2011;85(3):1360-9. https://doi.org/10.1128/JVI.02090-10
Cuartas-López AM, Hernández-Cuellar CE, Gallego-Gómez JC.Disentangling the role of PI3K/Akt, Rho GTPase and the actin cytoskeletonon dengue virus infection. Virus Res. 2018;256:153-65. https://doi.org/10.1016/j.virusres.2018.08.013
Loerke D, Mettlen M, Yarar D, Jaqaman K, Jaqaman H, Danuser G, et al.Cargo and dynamin regulate clathrin-coated pit maturation. Hughson F, ed.PLoS Biol. 2009;7(3):0628-39. https://doi.org/10.1371/journal.pbio.1000057
Ang F, Wong APY, Ng MML, Chu JJH. Small interference RNA profilingreveals the essential role of human membrane trafficking genes in mediatingthe infectious entry of dengue virus. Virol J. 2010;7(24):1-17. https://doi.org/10.1186/1743-422X-7-24
Jitoboam K, Phaonakrop N, Libsittikul S, Thepparit C, Roytrakul S,Smith DR. Actin interacts with dengue virus 2 and 4 envelope proteins.PLoS One. 2016;11(3):1-18. https://doi.org/10.1371/journal.pone.0151951
Tjota M, Lee SK, Wu J, Williams JA, Khanna MR, Thomas GH. AnnexinB9 binds to β(H)-spectrin and is required for multivesicular body functionin Drosophila. J Cell Sci. 2011;124(17):2914-26. https://doi.org/10.1242/jcs.078667
De Maio FA, Risso G, Iglesias NG, Shah P, Pozzi B, Gebhard LG, et al.The Dengue virus NS5 protein intrudes in the cellular spliceosome andmodulates splicing. PLoS Pathog. 2016;12(8):1-29. https://doi.org/10.1371/journal.ppat.1005841
Nguyen THD, Galej WP, Bai XC, Savva CG, Newman AJ, Scheres SHW,et al. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature.2015;523(7558):47-52. https://doi.org/10.1038/nature14548
Su C-I, Tseng C-H, Yu C-Y, Lai MMC. SUMO Modification stabilizesdengue virus nonstructural protein 5 to support virus replication. J Virol.2016;90(9):4308-19. https://doi.org/10.1128/JVI.00223-16
Zhao J. Sumoylation regulates diverse biological processes. Cell MolLife Sci. 2007;64(23):3017-33. https://doi.org/10.1007/s00018-007-7137-4
Noppakunmongkolchai W, Poyomtip T, Jittawuttipoka T, LuplertlopN, Sakuntabhai A, Chimnaronk S, et al. Inhibition of protein kinase Cpromotes dengue virus replication. Virol J. 2016;13(35):1-13. https://doi.org/10.1186/s12985-016-0494-6
Bhattacharya D, Hoover S, Falk SP, Weisblum B, Vestling M, Striker R.Phosphorylation of yellow fever virus NS5 alters methyltransferase activity.Virology. 2008;380(2):276-84. https://doi.org/10.1016/j.virol.2008.07.013
Byk LA, Gamarnik AV. Properties and functions of the dengue viruscapsid protein. Annu Rev Virol. 2016;3(1):263-81 [citado enero 25, 2022].Disponible en: https://pubmed.ncbi.nlm.nih.gov/27501261/
Samsa MM, Mondotte JA, Iglesias NG, Assunção-Miranda I, Barbosa-LimaG, Da Poian AT, et al. Dengue virus capsid protein usurps lipid dropletsfor viral particle formation. PLoS Pathog. 2009:5(10)e1000632. https://doi.org/10.1371/journal.ppat.1000632
Lopez-Denman AJ, Mackenzie JM. The IMPORTance of the nucleus duringflavivirus replication. Viruses. 2017;9(1):1-14. https://doi.org/10.3390/v9010014
Johansson M, Brooks AJ, Jans DA, Vasudevan SG. A small region ofthe dengue virus-encoded RNA-dependent RNA polymerase, NS5,confers interaction with both the nuclear transport receptor importin-βand the viral helicase, NS3. J Gen Virol. 2001;82(4):735-45. https://doi.org/10.1099/0022-1317-82-4-735
Colpitts TM, Barthel S, Wang P, Fikrig E. Dengue virus capsid proteinbinds core histones and inhibits nucleosome formation in human livercells. PLoS One. 2011;6(9):e24365. https://doi.org/10.1371/journal.pone.0024365
Edgil D, Polacek C, Harris E. Dengue virus utilizes a novel strategy fortranslation initiation when cap-dependent translation is inhibited. J Virol.2006;80(6):2976-86. https://doi.org/10.1128/JVI.80.6.2976-2986.2006
Cervantes-Salazar M, Angel-Ambrocio AH, Soto-Acosta R, Bautista-Carbajal P, Hurtado-Monzon AM, Alcaraz-Estrada SL, et al. Dengue virusNS1 protein interacts with the ribosomal protein RPL18: This interactionis required for viral translation and replication in Huh-7 cells. Virology.2015;484:113-26. https://doi.org/10.1016/j.virol.2015.05.017
Duong FHT, Christen V, Berke JM, Penna SH, Moradpour D, HeimMH. Upregulation of protein phosphatase 2Ac by hepatitis C virusmodulates NS3 helicase activity through inhibition of protein argininemethyltransferase 1. J Virol. 2005;79(24):15342-50. https://doi.org/10.1128/JVI.79.24.15342-15350.2005
Agrawal T, Schu P, Medigeshi GR. Adaptor protein complexes-1and 3 are involved at distinct stages of flavivirus life-cycle. Sci Rep.2013;3(1813):1-9. https://doi.org/10.1038/srep01813
Tongmuang N, Yasamut U, Noisakran S, Sreekanth GP, YenchitsomanusP thai, Limjindaporn T. Suppression of μ1 subunit of the adaptor proteincomplex 2 reduces dengue virus release. Virus Genes. 2020;56(1):27-36.https://doi.org/10.1007/s11262-019-01710-x
Krauss M, Kukhtina V, Pechstein A, Haucke V. Stimulation ofphosphatidylinositol kinase type I-mediated phosphatidylinositol(4,5)-bisphosphate synthesis by AP-2μ–cargo complexes. Proc NatlAcad Sci U S A. 2006;103(32):11934-9. https://doi.org/10.1073/pnas.0510306103
Chen Z, Lin X, Zhang Z, Huang J, Fu S, Huang R. EXO70 proteininfluences dengue virus secretion. Microbes Infect. 2011;13(2):143-50.https://doi.org/10.1016/j.micinf.2010.10.011
Duan X, Lu X, Li J, Liu Y. Novel binding between pre-membraneprotein and vacuolar ATPase is required for efficient dengue virussecretion. Biochem Biophys Res Commun. 2008;373(2):319-24. https://doi.org/10.1016/j.bbrc.2008.06.041
Wang JL, Zhang JL, Chen W, Xu XF, Gao N, Fan DY, et al. Roles of smallGTPase RAc1 in the regulation of actin cytoskeleton during dengue virusinfection. PLoS Negl Trop Dis. 2010;4(8):e809. https://doi.org/10.1371/journal.pntd.0000809
Choy MM, Sessions OM, Gubler DJ, Ooi EE. Production of infectiousdengue virus in Aedes aegypti is dependent on the Ubiquitin ProteasomePathway. PLoS Negl Trop Dis. 2015;9(11):1-14. https://doi.org/10.1371/journal.pntd.0004227
Yang CF, Tu CH, Lo YP, Cheng CC, Chen WJ. Involvement of tetraspaninC189 in cell-to-cell spreading of the dengue virus in C6/36 cells.PLoS Negl Trop Dis. 2015;9(7):1-21. https://doi.org/10.1371/journal.pntd.0003885
Vora A, Zhou W, Londono-Renteria B, Woodson M, Sherman MB, ColpittsTM, et al. Arthropod EVs mediate dengue virus transmission throughinteraction with a tetraspanin domain containing glycoprotein Tsp29Fb.Proc Natl Acad Sci U S A. 2018;115(28):E6604-13. https://doi.org/10.1073/pnas.1720125115
Reyes JIL, Suzuki Y, Carvajal T, Muñoz MNM, Watanabe K. Intracellularinteractions between arboviruses and Wolbachia in Aedes aegypti. FrontCell Infect Microbiol. 2021;11(690087):1-15. https://doi.org/10.3389/fcimb.2021.690087
Molina-Cruz A, Gupta L, Richardson J, Bennett K, Black IV W,Barillas-Mury C. Effect of mosquito midgut trypsin activity on dengue-2virus infection and dissemination in Aedes aegypti. Am J Trop Med Hyg.2005;72(5):631-7. https://pubmed.ncbi.nlm.nih.gov/15891140/