2021, Número 3
<< Anterior Siguiente >>
Rev Cubana Pediatr 2021; 93 (3)
Microbiota intestinal y los primeros 1000 días de vida
Castañeda GC
Idioma: Español
Referencias bibliográficas: 58
Paginas: 1-23
Archivo PDF: 490.75 Kb.
RESUMEN
Introducción: El proceso de colonización del microbioma intestinal en los primeros 1000 días de vida tiene repercusión en la salud y enfermedades del niño dependientes de factores de riesgo.
Objetivos: Revisar evidencias importantes sobre el significado de la relación entre la microbiota Intestinal y los primeros 1000 días de vida, y repercusión de los principales factores de riesgo.
Métodos: Se revisaron publicaciones en idiomas español e inglés en PubMed, Google Scholar y SciELO: enero 2005-febrero 2020 usando los términos microbiota intestinal, microbiomas, primeros 1000 días de vida, factores de riesgo, enterocolitis necrosante, probióticos y prebióticos.
Análisis e integración de la información: Hay demostrados argumentos que vinculan la microbiota intestinal y primeros 1000 días de vida del niño, según modo de parto, tiempo de gestación y lactancia. Se examina los beneficios del parto vaginal, lactancia materna y la aparición de enfermedades a mediano y largo plazo, relacionadas con factores de riesgo, como cesárea, prematuridad, lactancia artificial y exposición antibiótica prenatal y posnatal. Se describe resultados favorables con el uso de bioterapia con probióticos y prebióticos en la enterocolitis necrosante.
Conclusiones: Se expone el valor de la microbiota intestinal en los primeros 1000 días de vida para la salud del niño, influenciada por condiciones de normalidad como el parto vaginal y la lactancia materna e implicaciones clínicas relacionadas con factores de riesgo mencionado. Es importante el tratamiento con probióticos multicepas y prebióticos para la recuperación de la microbiota en el niño en enfermedades como la enterocolitis necrosante y estados de sepsis grave.
REFERENCIAS (EN ESTE ARTÍCULO)
Butel MJ, Waligora-Dupriet AJ, Wydau-Dematteis S. The developing gut microbiota and its consequences for health. J Dev Orig Health Dis. 2018;9(6):590-7. doi: 10.1017/S2040174418000119
Van der Beek E. Nutritional Programming and Later Life: The role of macronutrient quality during the first 1,000 days. Sight Life E-magazine. 2018 [acceso01/02/2020];32(1):46-52. DIsponible en: https://research.rug.nl/en/publications/nutritional-programming-and-later-life-the-role-of-macronutrient-
Berman I, Ortiz OE, Pineda LG, Richheimer R. Los primeros mil días de vida. Una mirada rápida. An Méd (Mex). 2016 [acceso 2020/02/26];61(4):313-8. Disponible en: https://www.medigraphic.com/pdfs/abc/bc-2016/bc164o.pdf
Cusick S, Georgieff MK; Office of research- Innocenti. The first 1,000 days of life: The brain’s window of opportunity. New York: UNICEF; 2017 [acceso 01/06/2020]:e958. Disponible en: https://www.unicef-irc.org/article/958/
Pantoja M. Los primeros 1 000 días de vida. Rev Soc Bol Ped. 2015 [acceso 15/01/2020];54(2):60-1. Disponible en: http://www.scielo.org.bo/pdf/rbp/v54n2/v54n2_a01.pdf
Esquivel M. La atención en los primeros 1 000 días de vida de los niños en Cuba. La Habana: Universidad de Ciencias Médicas de La Habana, FMC “Julio Trigo López”; Grupo Nacional de Investigaciones sobre Crecimiento y Desarrollo Humano; 2017 [acceso 07/01/2020]. Disponible en: https://www.sap.org.ar/docs/Congresos2017/Auxo/AUX10%20Esquivel-%20La%20atencion%20a%20los%20primeros%201000%20dias%20de%20vida%20en%20Cuba.pdf
Arboleya S, Suárez M, Fernández N, Mantecón L, Solís G, Gueimonde M, et al. C-section and the Neonatal Gut Microbiome Acquisition: Consequences for Future Health. Ann Nutr Metab. 2018 [acceso 04/02/2020];73(suppl3):17–23. Disponible en: https://www.karger.com/Article/FullText/490843
Richter L. Apoyando el desarrollo en la primera infancia: de la ciencia a aplicación en gran escala. Serie The Lancet sobre el Desarrollo Infantil. Guatemala: Representación OPS, CA; 2017 [acceso 02/01/2020]. Disponible en: http://www.paho.org/gut
Serrano C, Harri PR. Desarrollo del microbioma intestinal en niños. Impacto en salud y enfermedad. Rev Chilena Pediatr. 2016 [acceso 02/01/2020];87(3). Disponible en: https://www.researchgate.net/publication/302554162_Desarrollo_del_microbioma_intestinal_en_ninos_Impacto_en_salud_y_enfermedad
Stewart CJ, Ajami NJ,O'Brien JL,Hutchinson DS,Smith DP,Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583-8. doi: 10.1038/s41586-018-0617-x
Kim H, Sitarik AR, Woodcroft K, Johnson CC, ZorattiE. Birth Mode, Breastfeeding, Pet Exposure, and Antibiotic Use: Associations With the Gut Microbiome and Sensitization in Children. Curr Allerg Asth Rep. 2019;1922. doi: https://doi.org/10.1007/s11882-019-0851-9
Castañeda C. La Microbiota Intestinal. En: UNIANDES, editor. Microbiota intestinal y sus desafíos. Quito, Ecuador: Ed. El Siglo; 2020, p, 9-27.
Yang J-Y, Kweon M-N. The gut microbiota: a key regulator of metabolic diseases. BMB Reports. 2016 [acceso 05/01/2020];49(10):536–41. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27530685
Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Met. 2016 [acceso 14/12/2019];22:713–22 Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27387886
Itani T, Moubareck CA, Melki I, Rousseau I, Mangin I, Butet M-J, et al. Establishment and development of the intestinal microbiota. Anaerobe. 2017;43:4-14. doi: https://doi.org/10.1016/j.anaerobe/2016.11.001
Perez-Muñoz ME, Arrieta M-C, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017 [acceso 12/12/2019];5(1). Disponible en: http://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-017-0268-4
Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonization may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Scientific Rep. 2016 [acceso 13/02/2020];6:e23129. Disponible en:https://www.nature.com/articles/srep23129
Chen HJ, Gui TL. Intrauterine Microbiota: Missing, or the Missing Link? Trends Neurosci. 2019 [acceso 27/01/2020];42(6):402-13. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/31053242
Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, et al. Stunted gut microbiota and increased pathogen colonisation associated with caesarean birth. Nature.2019 [20/01/2020];574(7776):1-5. Disponible en: https://www.researchgate.net/publication/335898410_Stunted_microbiota_and_opportunistic_pathogen_colonization_in_caesarean-section_birth
Reyman M, van Houten MA, van Baarle D, Bosch AA, Man W-H, Chu M-L, et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nature Communicat. 2019.[acceso 01/14/2020];10;4997. Disponible en: https://www.nature.com/articles/s41467-019-13014-7#citeas
Milani C, Duranti S, Bottacini F, CaseyE, Turroni F, Mahony J, et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev. 2017 [02/02/2020];84. Disponible en:https://pubmed.ncbi.nlm.nih.gov/29118049-the-first-microbial-colonizers-of-the-human-gut-composition-activities-and-health-implications-of-the-infant-gut-microbiota/
Rautava S. Microbial composition of the initial colonization of newborns. In: Isolauri I, Sherman PM, Walker WA, editors. Intestinal microbiome: Functional aspects in health and disease. Switzerland: Karger AG, Basel; 2017 [acceso 02/12/2019];88:11-21. Disponible en: https://www.karger.com/Article/Abstract/455209
Ray K. Gut Microbiota: First steps in the infant gut microbiota. Nat Rev Gastroenterol Hepatol 2016 [01/15/2020];13(8):437. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27381073-gut-microbiota-first-steps-in-the-infant-gut-microbiota/
Moya-Pérez A, Luczynski P, Renes IB, Wang S, Borre Y, Ryan C-A et al. Intervention strategiesfor cesarean section-induced alterations in the microbiota-gut-brain-axis. Nutr Res 2017 [acceso 01/14/2020];75(4):225-240. doi: 10.1093/nutrit/nuw069.
Callaway E. C. section are missing key microbes. Nat News. 2019 [acceso 27/01/2020]:e41586 Disponible en: https://www.nature.com/articles/d41586-019-02807-x
Baumfeld Y, Walfisch A, Wainstock T, Segal I, Sergienko R, Landau D. et al. Elective cesarean delivery at term and the long-term risk for respiratory morbidity of the offspring.Eur J Pediatr.2018;177:1653–9. doi: 10.1007/s00431-018-3225-8.
Magne F, Silva AP, Carvajal B, Gotteland M. The Elevated Rate of Cesarean Section and Its Contribution to Non-Communicable Chronic Diseases in Lati nAmerica: The Growing Involvement to the Microbiota. eCollection 2017.Front Pediatr. 2017; 5:192. doi: 10.3389/fped.2017.00192
Chen G, Chang W-L, Shu B-C, Guo YL, Chiou S-T, Chiang T-I. Associations of caesarean delivery and the occurrence of neurodevelopmental disorders, asthma or obesity in childhood based on Taiwan birth cohort study. BMJ. 2017;7(9). doi: https://bmjopen.bmj.com/content/7/9/e017086
Darabi B, Rahmati S, HafeziAhmadi MR, Badfar G, Azami M. The association between caesarean section and childhood asthma: an updated systematic review and meta-analysis. Allergy, Asthma Clin Immunol. 2019;15(62). doi:10.1186/s13223-019-0367-9
Vatanen T. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562:589–94. doi: https://doi.org/10.1038/s41586-018-0620-2
Masi AC, Stewart CJ. The role of the preterm intestinal microbiome in sepsis and necrotising enterocolitis. Early Hum Dev.2019;138:4854. doi: 10.1016/j.earlhumdev.2019.104854
LW Bi, Yan BL,Yang QY,Li MM, Cui HL. Probiotic strategies to prevent necrotizing enterocolitis in preterm infants: a meta-analysis. Pediatr Surg. 2019;35(10):1143-62. doi: 10.1007/s00383-019-04547-5
Sun J, Marwah G, Westgarth M, Buys N, Ellwood D, Gray PH, et al. Effects of Probiotics on Necrotizing Enterocolitis, Sepsis, Intraventricular Hemorrhage, Mortality, Lengthof Hospital Stay, and Weight Gain in Very PretermInfants: A Meta-Analysis. Adv Nutr. 2017;8(5):749-63. doi: 10.3945/an.116.014605
Chang HY, Chen JH, Chang JH, Lin HC, Lin CY, Peng CC. Multiple strains probiotics appear to be the most effective probiotics in the prevention of necrotizing enterocolitis and mortality: An updated meta-analysis. eCollection 2017. Plos One. 2017;12(2):e0171579. doi: 10.1371/journal.pone.0171579
van Der A, Chris HP, van Goudoever JB, Szajewska H, Embleton ND, Hojsak I, et al. Probiotics for preterm infants. A strain. Specific systematic review and network meta-analysis. J Ped Gastroenterol Nutr. 2018 [acceso 10/12/2019];67 (1):103-22. Disponible en: https://journals.lww.com/jpgn/Fulltext/2018/07000/Probiotics_for_Preterm_Infants__A_Strain_Specific.21.aspx
Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life: a systematic review. BMC Gastroenterol.2016;16(1):86. doi:10.1186/s12876-016-0498-0
World Health Organization. Statement on Caesarean. Section Rates. Geneva: WHO; 2019 [acceso 25/01/2020]. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/161442/WHO_RHR_15.02_eng.pdf;jsessionid=18BEA58B47518975FA3EF2C0AFBAF886?sequence=1.
Boerma T, Ronsmans C, Melesse DY, Barros AJD, Barros FC, Juan L, et al. Global epidemiology of use of and disparities in caesarean sections. Lancet. 2018;392(10155):1341-8. doi: 10.1016/S0140-6736(18)31928-7
Singh P, Hasmi G, Swain PK. High prevalence of cesarean section births in private sector health facilities. Analysis of district level household survey-4 (DLHS-4) of India. BMC Public Health.2018;18(1):613. doi: 10.1186/s12889-018-5533-3.
Mahadik K. Rising Cesarean Rates: Are Primary Sections Over used? J Obstet Gynaecol India. 2019;69(6):483-9. doi: 10.1007/s13224-019-01246-y
Keag OE, Norman JE, Stock SJ. Long-term risks and benefits associated with cesarean delivery for mother, baby, and subsequent pregnancies: systematic review and meta-analysis. eCollection 2018. Plos Med. 2018;15(1):e100249. doi: 10.1371/journal.pmed.1002494.
Davis EC, Andrew M, Dinsmoor AM, Wang M, Donovan SM. Microbiome Composition in Pediatric Populations from Birth to Adolescence: Impact of Diet and Prebiotic and Probiotic Interventions. Dig Dis Sci. 2020;65(3):706-22. doi:10.1007/s10620-020-06092-x
Moossavi S, Miliku K, Sepehri S. The prebiotic and probiotic properties of human milk: Implications for infant immune development and pediatric asthma. Front Pediatr. 2018;6:197. doi:10.3389/fped.2018.00197
Aakko J, Kumar H, Rautava S, Wise A, Autran C, Bode L, et al. Human milk oligo saccharide categories define the microbiota composition in human colostrum. Benef Microbes. 2017;8(4):563-7. doi: 10.3920/BM2016.0185
Ojo-Okunola A, Cacciatore S, Nicol MP, Toit E. The Determinants of the Human Milk Metabolome and Its Role in Infant Health. Metabolites. 2020;20;10(2). doi: 10.3390/metabo10020077
Levin AM, Sitarik AR, Havstad SL, Fujimura KE, Weikan G, Cassidy-Bushrow AE, et al. Joint effects of pregnancy, sociocultural and environmental factors on early life gut microbiome structure and diversity. Sci Rep. 2016 [acceso 02/02/2020];6:31775. Disponible en: https://www.nature.com/articles/srep31775
Tanaka M, Nakayarma J. Development of the gut microbiota in infancy and its impact on health in later life. Alerg Intern. 2017;6(4):515-22. doi: https://doi.org/10.1016/j.alit.2017.07.010
Iozzo P, Sanguinetti E. Early dietary patterns and microbiota development: Still a way to go from to descriptive interactions to health-relevants solutions. Front Nutr. 2018:e33889. doi: https://doi.org/10.3389/fnut.2018.00005
Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microb. 2015;17(5):690-703. doi: 10.1016/j.chom.2015.04.004
Yassour M, Vatanen T, Siljander H, Hämäläinen AM, Härkönen T, Ryhänen SJ et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Translat Med. 2016;8(343):81. doi:10.1126/scitranslmed.aad0917
Neuman H, Forsythe P, Uzan A, Avni O, Koren O. Antibiotics in Early Life: Dysbiosis and the Damage Done. FEMS MicrobiolRev. 2018 [acceso 16/02/2020]; 42(4):489-99. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29945240-antibiotics-in-early-life-dysbiosis-and-the-damage-done/
Bokulich NA, Chung J, Battaglia T, Henderson H, Jay M, Huilin Li, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life Sci Traslat Med. 2016;8(343). doi: 10.1126/scitranslmed.aad7121
Castañeda Guillot C. Microbiota intestinal y obesidad en la infancia. Rev Cubana Pediatr. 2020 [acceso 27/02/2020];92 (1):e927. Disponible en: http://scielo.sld.cu/pdf/ped/v92n1/1561-3119-ped-92-01-e927.pdf
van Der A, van Goudoever JB, Raanan S, Domellöf M, Embleton ND, Hojsak I, et al. Probiotics and Preterm Infants. A position paper by the ESPGHAN Committee on Nutrition and the ESPGHAN Working Group for Probiotics and Prebiotics. J Ped Gastroenterol Nutr.2020 [acceso 25/03/2020]:e96178. Disponible en: https://journals.lww.com/jpgn/Abstract/publishahead/Probiotics_and_Preterm_Infants__A_Position_Paper.96178.aspx
Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet. 2016;388(10063): 3027-35. doi: https:// doi.org/10.1016/SO140-6736(16)31593-8
56.Charles MA, Delpierre C, Breant B. Developmental origin of health and adult diseases (DOHaD): evolution of a concept over three decades. Med Sci (Paris). 2016;32(1):15–20. doi: 10.1051/medsci/20163201004
Lake A. The first 1,000 days: a singular window of opportunity. New York: UNICEF; 2017 [acceso 2020/01/15]. Disponible en: https://blogs.unicef.org/blog/first1000-days-silngular-opportunity/
Francavilla R. Cristofori F, Tripaldi ME, Indrio F. Intervention for dysbiosis in children born by C-Section. Ann Nutr Metab. 2018;73(Supl. 3):33–9. doi: https://doi.org/10.1159/000490847