2023, Número 1
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2023; 25 (1)
Profundidad de curado, propiedades mecánicas y morfología de resinas compuestas duales
Sarialioglu GA, Durmus A, Zengin KB, Selin KS, Donmez N
Idioma: Ingles.
Referencias bibliográficas: 46
Paginas: 72-87
Archivo PDF: 434.04 Kb.
RESUMEN
Este estudio evaluó propiedades físicas y estructurales, como el grado de conversión (DC), la dureza Vickers (VHN) y la resistencia a la compresión (CS), de tres nuevos compósitos a base de resina de curado dual tipo bulk (RBC; ACTIVA , HyperFIL y Fill-Up) y los comparó con los de una resina compuesta convencional (Filtek Z250) en tres profundidades clínicamente relevantes. Se prepararon muestras (n=180) en tres profundidades (2,4 y 6mm). Se realizaron análisis de espectroscopia infrarroja por transformada de Fourier (FTIR) y pruebas VHN y CS. El valor de DC se calculó considerando el cambio relativo en los picos alifáticos C=C. Las superficies fracturadas de muestras representativas se caracterizaron mediante microscopía electrónica de barrido (MEB). Los datos se evaluaron estadísticamente mediante análisis de varianza de dos vías y pruebas post hoc de Bonferroni (p‹0,05). De acuerdo con los resultados de VHN, Filtek Z250 mostró la relación de dureza inferior/superior más alta (97,94±1,01) con un espesor de 2mm y ACTIVA mostró la relación de dureza inferior/superior más baja (43,48±5,64) con un espesor de 6mm (p‹0,001). De acuerdo con los resultados de FTIR, la DC disminuyó al aumentar el espesor en todos los materiales (p‹0,05). Filtek Z250 mostró los valores de CS más altos (301±12,4 MPa) y ACTIVA los más bajos (232±17,2 MPa) a 2mm de espesor (p‹0,05). Los valores más bajos de CS se obtuvieron para ACTIVA y los valores más altos para Filtek Z250 para muestras con espesores de 4 y 6mm, respectivamente (p‹0,05). Las características estructurales de las resinas compuestas de restauración, como la química; además del tipo y contenido del relleno, y los parámetros operativos (es decir, el espesor del material y las condiciones de curado) afectan en gran medida las reacciones de interacción química y, por lo tanto, los valores de DC, VHN y CS.
REFERENCIAS (EN ESTE ARTÍCULO)
AlQahtani M.Q., Michaud P.L., Sullivan B.,Labrie D., AlShaafi M.M., Price R.B. Effectof High Irradiance on Depth of Cure of aConventional and a Bulk Fill Resin-basedComposite. Oper Dent. 2015; 40 (6): 662-72.
Santin D.C., Velo M., Camim F.D.S.,Brondino N.C.M., Honorio H.M., MondelliR.F.L. Effect of thickness on shrinkage stressand bottom-to-top hardness ratio of conventionaland bulk-fill composites. Eur J OralSci. 2021; 129 (6): e12825.
Fronza B.M., Rueggeberg F.A., Braga R.R.,Mogilevych B., Soares L.E., Martin A.A.,et al. Monomer conversion, microhardness,internal marginal adaptation, and shrinkagestress of bulk-fill resin composites. DentMater. 2015; 31 (12): 1542-51.
Fronza B.M., Ayres A., Pacheco R.R.,Rueggeberg F.A., Dias C., Giannini M.Characterization of Inorganic Filler Content,Mechanical Properties, and Light Transmissionof Bulk-fill Resin Composites. OperDent. 2017; 42 (4): 445-55.
Jang J.H., Park S.H., Hwang I.N. Polymerizationshrinkage and depth of cure of bulk-fillresin composites and highly filled flowableresin. Oper Dent. 2015; 40 (2): 172-80.
Price R.B., Rueggeberg F.A., Harlow J.,Sullivan B. Effect of mold type, diameter,and uncured composite removal method ondepth of cure. Clin Oral Investig. 2016; 20(7): 1699-707.
Reis A.F., Vestphal M., Amaral R.C.D., Rodrigues J.A., Roulet J.F., Roscoe M.G. Efficiency of polymerization of bulk-fill composite resins: a systematic review. Braz Oral Res. 2017; 31 (suppl 1): e59.
Benetti A.R., Havndrup-Pedersen C., Honore D., Pedersen M.K., Pallesen U. Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation. Oper Dent. 2015; 40 (2): 190-200.
Toh W.S., Yap A.U., Lim S.Y. In Vitro Biocompatibility of Contemporary Bulk-fill Composites. Oper Dent. 2015; 40 (6): 644-52.
de Mendonca B.C., Soto-Montero J.R., de Castro E.F., Kury M., Cavalli V., Rueggeberg F.A., et al. Effect of extended light activation and increment thickness on physical properties of conventional and bulk-filled resin-based composites. Clin Oral Investig. 2022; 26 (3): 3141-50.
Ferracane J.L., Mitchem J.C., Condon J.R., Todd R. Wear and marginal breakdown of composites with various degrees of cure. J Dent Res. 1997; 76 (8): 1508-16.
Stansbury J.W. Curing dental resins and composites by photopolymerization. J Esthet Dent. 2000; 12 (6): 300-8.
Kwaśny M,. Bombalska A., Obroniecka K. A reliable method of measuring the conversion degrees of methacrylate dental resins. Sensors (Basel). 2022; 10; 22 (6): 2170.
da Silva E.M., Almeida G.S., Poskus L.T., Guimaraes J.G. Relationship between the degree of conversion, solubility and salivary sorption of a hybrid and a nanofilled resin composite. J Appl Oral Sci. 2008; 16 (2): 161-6.
Schneider L.F., Pfeifer C.S., Consani S., Prahl S.A., Ferracane J.L. Influence of photoinitiator type on the rate of polymerization, degree of conversion, hardness and yellowing of dental resin composites. Dent Mater. 2008; 24 (9): 1169-77.
Opdam N.J., Bronkhorst E.M., Roeters J.M., Loomans B.A. A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dent Mater. 2007; 23 (1): 2-8.
Cebe M.A., Cebe F., Cengiz M.F., Cetin A.R., Arpag O.F., Ozturk B. Elution of monomer from different bulk fill dental composite resins. Dent Mater. 2015; 31 (7): e141-9.
Tanaka K., Taira M., Shintani H., Wakasa K., Yamaki M. Residual monomers (TEGDMA and Bis-GMA) of a set visible-light-cured dental composite resin when immersed in water. J Oral Rehabil. 1991; 18 (4): 353-62.
Vankerckhoven H., Lambrechts P., van Beylen M., Davidson C.L., Vanherle G. Unreacted methacrylate groups on the surfaces of composite resins. J Dent Res. 1982; 61 (6): 791-5.
Hayashi J., Espigares J., Takagaki T., Shimada Y., Tagami J., Numata T., Chan D., Sadr A. Real-time in-depth imaging of gap formation in bulk-fill resin composites. Dent Mater. 2019; 35: 585-96.
Vandewalker J.P., Casey J.A., Lincoln T.A., Vandewalle K.S. Properties of dual-cure, bulk-fill composite resin restorative materials. Gen Dent. 2016; 64 (2): 68-73.
de Mendonça B.C., Soto-Montero J.R., de Castro E.F., Pecorari V.G.A., Rueggeberg F.A., Giannini M. Flexural strength and microhardness of bulk-fill restorative materials. J Esthet Restor Dent. 2021; 33 (4): 628-35.
Bouschlicher M.R., Rueggeberg F.A., Wilson B.M. Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent. 2004; 29 (6): 698-704.
Alrahlah A. Diametral tensile strength, flexural strength, and surface microhardness of bioactive bulk fill restorative. J Contemp Dent Pract. 2018; 19 (1): 13-9.
Daabash R., Alshabib A., Alqahtani M.Q,. Price R.B., Silikas N., Alshaafi M.M. Ionreleasing direct restorative materials: Keymechanical properties and wear. Dent Mater.2022 Oct 3:S0109-5641 (22) 00274-3.
Hughes K.O., Powell K.J., Hill A.E., TantbirojnD., Versluis A. Delayed Photoactivationof Dual-cure Composites: Effect on CuspalFlexure, Depth-of-cure, and MechanicalProperties. Oper Dent. 2019; 44 (2): 97-104.
Borges A., Chase M., Niederberger A.,Gonzalez M., Ribeiro A., Pascon F., et al. ACritical Review on the Conversion Degree ofResin Monomers by Direct Analyses. BrazilianDental Science. 2013;16.
Yokesh C.A., Hemalatha P., Muthalagu M.,Justin M.R. Comparative Evaluation of theDepth of Cure and Degree of Conversion ofTwo Bulk Fill Flowable Composites. J ClinDiagn Res. 2017; 11 (8): ZC86-ZC9.
Nascimento A.S., Lima D.B., Fook M.V.L.,Albuquerque M.S., Lima E.A., Sabino M.A.,et al. Physicomechanical characterizationand biological evaluation of bulk-fill compositeresin. Braz Oral Res. 2018; 32: e107.
Lovell L.G., Newman S.M., Bowman C.N.The effects of light intensity, temperature,and comonomer composition on the polymerizationbehavior of dimethacrylate dentalresins. J Dent Res. 1999; 78 (8): 1469-76.
Fraga M.A.A., Correr-Sobrinho L., SinhoretiM.A.C., Carletti T.M., Correr A.B. Dodual-cure bulk-fill resin composites reducegaps and improve depth of cure. Braz Dent J.2021; 32 (5): 77-86.
Lindberg A., Peutzfeldt A., van Dijken J.W.Curing depths of a universal hybrid and aflowable resin composite cured with quartztungsten halogen and light-emitting diodeunits. Acta Odontol Scand. 2004; 62 (2):97-101.
Finan L., Palin W.M., Moskwa N., McGinleyE.L., Fleming G.J. The influence of irradiationpotential on the degree of conversion andmechanical properties of two bulk-fill flowableRBC base materials. Dent Mater. 2013;29 (8): 906-12.
Sideridou I., Tserki V., Papanastasiou G.Effect of chemical structure on degree ofconversion in light-cured dimethacrylatebaseddental resins. Biomaterials. 2002; 23(8): 1819-29.
Yoon T.H., Lee Y.K., Lim B.S., Kim C.W.Degree of polymerization of resin compositesby different light sources. J Oral Rehabil.2002; 29 (12): 1165-73.
Halvorson R.H., Erickson R.L., DavidsonC.L. The effect of filler and silane content onconversion of resin-based composite. DentMater. 2003; 19 (4): 327-33.
Kaya M.S., Bakkal M., Durmus A., DurmusZ. Structural and mechanical properties of agiomer-based bulk fill restorative in differentcuring conditions. J Appl Oral Sci. 2018; 26:e20160662.
Ilie N. Microstructural dependence ofmechanical properties and their relationshipin modern resin-based composite materials. JDent. 2021;114:103829.
Heintze S.D., Ilie N., Hickel R., Reis A.,Loguercio A., Rousson V. Laboratory mechanicalparameters of composite resins andtheir relation to fractures and wear in clinicaltrials-A systematic review. Dent Mater. 2017;33 (3): e101-e14.
Poiate I.A., Vasconcellos A.B., Poiate JuniorE., Dias K.R. Stress distribution in the cervicalregion of an upper central incisor in a 3Dfinite element model. Braz Oral Res. 2009;23 (2): 161-8.
Sana S., Kondody R.T., Talapaneni A.K.,Fatima A., Bangi S.L. Occlusal stress distributionin the human skull with permanentmaxillary first molar extraction: A 3-dimensionalfinite element study. Am J OrthodDentofacial Orthop. 2021; 160 (4): 552-9.
Campaner L.M., Ribeiro A.O., Tribst J.P.M., Borges A.L., Di Lauro A.E., Lanzotti A., et al. Loading stress distribution in posterior teeth restored by different core materials under fixed zirconia partial denture: A 3D-FEA study. Am J Dent. 2021; 34 (3): 157-62.
Bicalho A.A., Tantbirojn D., Versluis A., Soares C.J. Effect of occlusal loading and mechanical properties of resin composite on stress generated in posterior restorations. Am J Dent. 2014; 27 (3): 129-33.
Khosravani M.R. Mechanical behavior of restorative dental composites under various loading conditions. J Mech Behav Biomed Mater. 2019;93:151-7.
Scribante A., Bollardi M., Chiesa M., Poggio C., Colombo M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. Biomed Res Int. 2019; 2019: 5109481.
Leprince J.G., Palin W.M., Vanacker J., Sabbagh J., Devaux J., Leloup G. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent. 2014; 42 (8): 993-1000.