2022, Número 4
<< Anterior Siguiente >>
Dermatología Cosmética, Médica y Quirúrgica 2022; 20 (4)
Antifúngicos actuales y futuros enfoques terapéuticos: artículo de revisión
Angulo RA, Santos OMF
Idioma: Español
Referencias bibliográficas: 53
Paginas: 469-477
Archivo PDF: 234.16 Kb.
RESUMEN
Las infecciones fúngicas invasivas se han convertido en una amenaza
para la salud del ser humano, ya que son responsables de
altas tasas de morbilidad y mortalidad, principalmente en pacientes
inmunocomprometidos. En la actualidad, los fármacos disponibles
para el tratamiento de estas infecciones están restringidos
a una cantidad mínima de antifúngicos de la clase de los polienos,
los azoles, las equinocandinas, las alilaminas y las pirimidinas, con
alta toxicidad, interacciones farmacológicas y problemas de distribución
por falta de vías de administración. Dado que existe la
urgente necesidad de desarrollar nuevos fármacos antifúngicos,
múltiples sustancias se encuentran en etapas avanzadas de estudio,
mientras que otras moléculas continúan bajo investigación
para este fin, incluyendo las orotomidas, los terpenoides, los inhibidores
de la glicosilfofatidilinositol, los tetrazoles, las arilamidinas
y los sideróforos, entre otros. Esta revisión bibliográfica tiene el
propósito de informar sobre las nuevas clases de antifúngicos y
las vías que se sugieren como posibles blancos terapéuticos.
REFERENCIAS (EN ESTE ARTÍCULO)
Mota Fernandes C, Dasilva D, Haranahalli K, McCarthy JB, Mallamo J,Ojima I et al., The future of antifungal drug therapy: novel compoundsand targets, Antimicrob Agents Chemother 2021; 65(2):31.
Fernández de Ullivarri M, Arbulu S, García-Gutiérrez E y Cotter PD,Antifungal peptides as therapeutic agents, Front Cell Infect Microbiol2020; 10(105):22.
Wall G y López-Ribot JL, Current antimycotics, new prospects, andfuture approaches to antifungal therapy, Antibiotics (Basilea) 2020;9(445):10.
Su H, Han L y Huang X, Potential targets for the development of newantifungal drugs, J Antibiot (Tokio) 2018; 71(12):978-91.
Pianalto KM y Alspaugh JA, New horizons in antifungal therapy, J Fungi(Basilea) 2016; 2(4):1-24.
Perfect JR, The antifungal pipeline: a reality check, Nat Rev Drug Discov2017; 16(9):603-16.
Stewart AG y Paterson DL, How urgent is the need for new antifungals?,Expert Opin Pharmacother 2021; 22(14):1857-70.
Carmona EM y Limper AH, Overview of treatment approaches forfungal infections, Clin Chest Med 2017; 38(3):393-402.
Wiederhold NP, The antifungal arsenal: alternative drugs and futuretargets, Int J Antimicrob Agents 2018; 51(3):333-9.
Chang YL, Yu SJ, Heitman J, Wellington M y Chen YL, New facets ofantifungal therapy, Virulence 2017; 8(2):222-36.
Gintjee TJ, Donnelley MA y Thompson GR 3rd, Aspiring antifungals:review of current antifungal pipeline developments, J Fungi (Basilea)2020; 6(1):1-28.
Van Daele R, Spriet I, Wauters J, Maertens J, Mercier T, Van HeckeS et al., Antifungal drugs: what brings the future?”, Med Mycol 2019;57(Supplement 3):S328-43.
Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC et al.,Amphotericin primarily kills yeast by simply binding ergosterol, ProcNatl Acad Sci USA 2012; 109(7):2234-9.
Robbins N, Wright GD y Cowen LE, Antifungal drugs: the current armamentariumand development of new agents, Microbiol Spectr 2016;4(5):1-20.
Faustino C y Pinheiro L, Lipid systems for the delivery of amphotericinb in antifungal therapy, Pharmaceutics 2020; 12(1):1-29.
Aigner M y Lass-Flörl C, Encochleated amphotericin b: is the oralavailability of amphotericin b finally reached?, J Fungi (Basilea) 2020;6(2):1-66.
Thompson GR 3rd, Rendon A, Ribeiro Dos Santos R, Queiroz-TellesF, Ostrosky-Zeichner L, Azie N et al., Isavuconazole treatment ofcryptococcosis and dimorphic mycoses, Clin Infect Dis 2016; 63(3):356-62.
Donnelley MA, Zhu ES y Thompson GR 3rd, Isavuconazole in thetreatment of invasive aspergillosis and mucormycosis infections, InfectDrug Resist 2016; 9:79-86.
Abuhelwa AY, Foster DJ, Mudge S, Hayes D y Upton RN, Populationpharmacokinetic modeling of itraconazole and hydroxyitraconazolefor oral suba-itraconazole and sporanox capsule formulations inhealthy subjects in fed and fasted states, Antimicrob Agents Chemother
2015; 59(9):5681-96.20. Lindsay J, Mudge S y Thompson GR 3rd, Effects of food and omeprazoleon a novel formulation of super bioavailability itraconazole inhealthy subjects, Antimicrob Agents Chemother 2018; 62(12):e01723-18.
Abbotsford J, Foley DA, Goff Z, Bowen AC, Blyth CC, Yeoh DK, Clinicalexperience with suba-itraconazole at a tertiary paediatric hospital,J Antimicrob Chemother 2021; 76(1):249-52.
Whitmore TJ, Yaw M, Lavender M, Musk M, Boan P y Wrobel J,A novel highly bio-available itraconazole formulation (suba®-itraconazole) for anti-fungal prophylaxis in lung transplant recipients,Transpl Infect Dis 2021; 23(4):e13587.
Krishnan BR, James KD, Polowy K, Bryant BJ, Vaidya A, Smith S et al.,cd101, a novel echinocandin with exceptional stability properties andenhanced aqueous solubility, J Antibiot (Tokio) 2017; 70(2):130-5.
Chandra J y Ghannoum MA, cd101, a novel echinocandin, possessespotent antibiofilm activity against early and mature Candida albicansbiofilms, Antimicrob Agents Chemother 2018; 62(2):e01750-17.
Bhattacharya S, Sae-Tia S y Fries BC, Candidiasis and mechanisms ofantifungal resistance, Antibiotics (Basilea) 2020; 9(6):312.
Oliver JD, Sibley GEM, Beckmann N, Dobb KS, Slater MJ, McEnteeL et al., F901318 represents a novel class of antifungal drug that inhibitsdihydroorotate dehydrogenase, Proc Natl Acad Sci USA 2016;113(45):12809-14.
Hope WW, McEntee L, Livermore J, Whalley S, Johnson A, FarringtonN et al., Pharmacodynamics of the orotomides against Aspergillus fumigatus:new opportunities for treatment of multidrug-resistant fungaldisease, mBio 2017; 8(4):e01157.
Wring SA, Randolph R, Park S, Abruzzo G, Chen Q, Flattery A et al.,Preclinical pharmacokinetics and pharmacodynamic target of scy-078, a first-in-class orally active antifungal glucan synthesis inhibitor,in murine models of disseminated candidiasis, Antimicrob Agents Chemother2017; 61(4):e02068.
Davis MR, Donnelley MA y Thompson GR, Ibrexafungerp: a novel oralglucan synthase inhibitor, Med Mycol 2020; 58(5):579-92.
Spec A, Pullman J, Thompson GR, Powderly WG, Tobin EH, VázquezJ, Wring SA, Angulo D et al., msg-10: a phase 2 study of oral ibrexafungerp(scy-078) following initial echinocandin therapy in non-neutropenicpatients with invasive candidiasis, J Antimicrob Chemother 2019;74(10):3056-62.
Shaw KJ e Ibrahim AS, Fosmanogepix: a review of the first-in-classbroad spectrum agent for the treatment of invasive fungal infections,J Fungi (Basilea) 2020; 6(4):239.
Alkhazraji S, Gebremariam T, Alqarihi A, Gu Y, Mamouei Z, Singh Set al., Fosmanogepix (apx001) is effective in the treatment of immunocompromisedmice infected with invasive pulmonary scedosporiosisor disseminated fusariosis, Antimicrob Agents Chemother 2020;64(3):e01735.
Nishimoto AT, Wiederhold NP, Flowers SA, Zhang Q, Kelly SL,Morschhäuser J et al., In vitro activities of the novel investigationaltetrazoles vt-1161 and vt-1598 compared to the triazole antifungalsagainst azole-resistant strains and clinical isolates of Candida albicans,Antimicrob Agents Chemother 2019; 63(6):e00341.
Wiederhold NP, Shubitz LF, Najvar LK, Jaramillo R, Olivo M, Catano Get al., The novel fungal cyp51 inhibitor vt-1598 is efficacious in experimentalmodels of central nervous system coccidioidomycosis causedby Coccidioides posadasii and Coccidioides immitis, Antimicrob Agents Chemother2018; 62(4):e02258.
Barbieri JS, New oral antifungals for onychomycosis: interesting potentialand the need for comparative effectiveness trials, Br J Dermatol2021; 184(2):191.
Wiederhold NP, Xu X, Wang A, Najvar LK, Garvey EP, Ottinger EA etal., In vivo efficacy of vt-1129 against experimental cryptococcal meningitiswith the use of a loading dose-maintenance dose administrationstrategy, Antimicrob Agents Chemother 2018; 62(11):e01315-18.
Nishikawa H, Sakagami T, Yamada E, Fukuda Y, Hayakawa H, NomuraN et al., T-2307, a novel arylamidine, is transported into Candida albicansby a high-affinity spermine and spermidine carrier regulated byAgp2, J Antimicrob Chemother 2016; 71(7):1845-55.
Lin X, Yuan S, Chen S, Chen B, Xu H, Liu L et al., Heterologous expressionof ilicicolin h biosynthetic gene cluster and production of a newpotent antifungal reagent, ilicicolin j, Molecules 2019; 24(12):2267.
Nakamura I, Yoshimura S, Masaki T, Takase S, Ohsumi K, HashimotoM et al., asp2397: a novel antifungal agent produced by Acremoniumpersicinum mf-347833, J Antibiot (Tokio) 2017; 70(1):45-51.
Dietl AM, Misslinger M, Aguiar MM, Ivashov V, Teis D, Pfister J et al.,The siderophore transporter Sit1 determines susceptibility to the antifungalvl-2397, Antimicrob Agents Chemother 2019; 63(10):e00807-19.
Kovanda LL, Sullivan SM, Smith LR, Desai AV, Bonate PL y Hope WW,Population pharmacokinetic modeling of vl-2397, a novel systemic antifungalagent: analysis of a single-and multiple-ascending-dose studyin healthy subjects, Antimicrob Agents Chemother 2019; 63(6):e00163.
Poester VR, Munhoz LS, Larwood D, Martínez M, Stevens DA y XavierMO, Potential use of nikkomycin z as an anti-Sporothrix spp. drug,Med Mycol 2021; 59(4):345-9.
Pfaller MA, Rhomberg PR, Messer SA y Castanheira M, In vitro activityof a Hos2 deacetylase inhibitor, mgcd290, in combination withechinocandins against echinocandin-resistant Candida species, DiagnMicrobiol Infect Dis 2015; 81(4):259-63.
O’Meara TR, Robbins N y Cowen LE, The Hsp90 chaperone networkmodulates Candida virulence traits, Trends Microbiol 2017; 25(10):809-19.
Teymuri M, Shams-Ghahfarokhi M y Razzaghi-Abyaneh M, Inhibitoryeffects and mechanism of antifungal action of the natural cyclic depsipeptide,aureobasidin a against Cryptococcus neoformans, Bioorg MedChem Lett 2021; 41:128013.
Juvvadi PR, Lee SC, Heitman J y Steinbach WJ, Calcineurin in fungalvirulence and drug resistance: prospects for harnessing targeted inhibitionof calcineurin for an antifungal therapeutic approach, Virulence2017; 8(2):186-97.
Li X, Hou Y, Yue L, Liu S, Du J y Sun S, Potential targets for antifungaldrug discovery based on growth and virulence in Candida albicans, AntimicrobAgents Chemother 2015; 59(10):5885-91.
Perfect JR, Tenor JL, Miao Y y Brennan RG, Trehalose pathway as anantifungal target, Virulence 2017; 8(2):143-9.
Ma D y Li R, Current understanding of hog-mapk pathway in Aspergillusfumigatus, Mycopathologia 2013; 175(1-2):13-23.
Rollin-Pinheiro R, Singh A, Barreto-Bergter E y Del Poeta M, Sphingolipidsas targets for treatment of fungal infections, Future Med Chem2016; 8(12):1469-84.
Koselny K, Green J, Favazzo L, Glazier VE, DiDone L, Ransford S et al.,Antitumor/antifungal celecoxib derivative ar-12 is a non-nucleosideinhibitor of the anl-family adenylating enzyme acetyl coa synthetase,acs Infect Dis 2016; 2(4):268-80.
Al-Janabi AA; Al-Mosawe HA y Al-Moswai K, Tamoxifen: from anticancerto antifungal drug, International Journal of Medical Reviews 2019;6(3): 88-91.
Zhai B, Wu C, Wang L, Sachs MS, Lin X, The antidepressant sertralineprovides a promising therapeutic option for neurotropic cryptococcalinfections, Antimicrob Agents Chemother 2012; 56(7):3758-66.