2022, Número 1
<< Anterior Siguiente >>
Rev Hematol Mex 2022; 23 (1)
Enfermedad mínima residual por citometría de flujo en pacientes con leucemia linfoblástica aguda
Cuta-Hernández E, Cruz-Baquero CA
Idioma: Español
Referencias bibliográficas: 60
Paginas: 58-69
Archivo PDF: 717.04 Kb.
RESUMEN
La citometría de flujo es una técnica de amplia importancia en la investigación biomédica
y diagnóstica, que permite el análisis multiparamétrico de poblaciones celulares.
Se caracteriza por ser altamente sensible y rápida. Asimismo, entre las características
evaluadas en la población celular de interés resaltan: el tamaño, granularidad, complejidad
del citoplasma celular y receptores de superficie que permiten la caracterización
y diferenciación fenotípica. En los últimos años, se han logrado avances notables en
esta técnica, lo que ha permitido diferenciar poblaciones celulares de forma más
específica y subclasificarlas mediante la conjugación de diversos anticuerpos monoclonales
antígeno-específicos capaces de reconocer un set completo de receptores de
membrana. A partir de dichos avances, esta técnica ha tomado especial importancia
en el diagnóstico y seguimiento de enfermedades y anomalías hematológicas, como
leucemias, síndromes mielodisplásicos, síndromes mieloproliferativos, entre otras. En
razón de lo antes expuesto, la enfermedad mínima residual presente en la leucemia
linfoblástica aguda es una población mínima leucémica que se detecta en un paciente
después del tratamiento oncológico suministrado, donde se evalúa la eficacia
del mismo, el riesgo de una recaída y el proceso de remisión completa por medio de
varios avances bioinformáticos, como la reacción en cadena de la polimerasa (PCR) y
citometría de flujo. Esta revisión se focaliza en los avances de la implementación de
citometría de flujo para la detección eficiente de la enfermedad mínima residual en
pacientes diagnosticados con leucemia linfoblástica aguda.
REFERENCIAS (EN ESTE ARTÍCULO)
Instituto Nacional de Salud. Comportamiento epidemiológicode cáncer en menores de 18 años, periodo 2015 a 2020. Colombia. Boletín Epidemiológico Semanal 2021.Disponible en: https://www.ins.gov.co/buscadoreventos/BoletinEpidemiologico/2021_Boletin_epidemiologico_semana_5.pdf
Villalba CP, Martínez PA, Acero H. Caracterización clínicoepidemiológicade los pacientes pediátricos con leucemiasagudas en la Clínica Universitaria Colombia. Serie de casos2011-2014. Pediatría (Santiago) 2016; 49 (1): 17-22.
Gacha-Garay MJ, Akle V, Enciso L, Garavito-Aguilar ZV.La leucemia linfoblástica aguda y modelos animalesalternativos para su estudio en Colombia. Rev ColombCancerol 2017; 21 (4): 212-224. https://doi.org/10.1016/j.rccan.2016.10.001.
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, LeBeau MM, et al. The 2016 revision to the World HealthOrganization classification of myeloid neoplasms and acuteleukemia. Blood 2016; 127 (20): 2391-405. doi: 10.1182/blood-2016-03-643544.
Grimwade LF, Fuller KA, Erber WN. Applications of imagingflow cytometry in the diagnostic assessment of acuteleukaemia. Methods 2017; 112: 39-45. http://dx.doi.org/10.1016/j.ymeth.2016.06.023.
Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH,et al. Association of minimal residual disease with clinicaloutcome in pediatric and adult acute lymphoblastic leukemia:A meta-analysis. JAMA Oncol 2017; 3 (7): e170580.doi: 10.1001/jamaoncol.2017.0580.
Moorman AV. New and emerging prognostic and predictivegenetic biomarkers in B-cell precursor acute lymphoblasticleukemia. Haematologica 2016; 101 (4): 407-16. doi:10.3324/haematol.2015.141101.
Sabath DE. Minimal residual disease. Leuk Lymph 2018; 1 (35).
Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia:a comprehensive review and 2017 update. Blood Cancer J2017; 7 (6): e577. doi: 10.1038/bcj.2017.53.
Tan SH, Bertulfo FC, Sanda T. Leukemia-initiating cells inT-cell acute lymphoblastic leukemia. Front Oncol 2017; 7:218. doi: 10.3389/fonc.2017.00218.
Fattizzo B, Rosa J, Giannotta JA, Baldini L, Fracchiolla NS. Thephysiopathology of T-cell acute lymphoblastic leukemia:Focus on molecular aspects. Front Oncol 2020; 10: 273.doi: 10.3389/fonc.2020.00273.
Genescà E, Morgades M, Montesinos P, Barba P, Gil C,Guàrdia R, et al. Unique clinico-biological, genetic andprognostic features of adult early T-cell precursor acutelymphoblastic leukemia. Haematologica 2020; 105 (6):e294-7. doi: 10.3324/haematol.2019.225078.
13.Heikamp EB, Pui C-H. Next-generation evaluationand treatment of pediatric acute lymphoblastic leukemia.J Pediatr 2018; 203: 14-24.e2. doi: 10.1016/j.jpeds.2018.07.039.
Sentís I, Gonzalez S, Genescà E, García-Hernández V, MuiñosF, Gonzalez C, et al. The evolution of relapse of adultT cell acute lymphoblastic leukemia. Genome Biol 2020;21 (1): 1-24. https://doi.org/10.1186/s13059-020-02192-z.
Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblasticleukemia. J Clin Oncol 2017; 35 (9): 975-83. https://ascopubs.org/doi/10.1200/JCO.2016.70.7836.
Van Dongen JJM, Van Der Velden VHJ, Brüggemann M,Orfao A. Minimal residual disease diagnostics in acutelymphoblastic leukemia: Need for sensitive, fast, and standardizedtechnologies. Blood 2015; 125 (26): 3996-4009.doi: 10.1182/blood-2015-03-580027.
Wu J, Jia S, Wang C, Zhang W, Liu S, Zeng X, et al. Minimalresidual disease detection and evolved IGH clonesanalysis in acute B lymphoblastic leukemia using IGH deepsequencing. Front Immunol 2016; 7: 403. doi: 10.3389/fimmu.2016.00403.
Del Príncipe MI, De Bellis E, Gurnari C, Buzzati E, Savi A,Consalvo MAI, et al. Applications and efficiency of flowcytometry for leukemia diagnostics. Expert Rev Mol Diagn2019; 19 (12): 1089-97. https://doi.org/10.1080/14737159.2019.1691918.
Azad A, Rajwa B, Pothen A. Immunophenotype discovery,hierarchical organization, and template-based classificationof flow cytometry samples. Front Oncol 2016; 6: 1-20.https://doi.org/10.3389/fonc.2016.00188.
Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry:basic principles and applications. Crit Rev Biotechnol 2017;37 (2): 163-76. doi: 10.3109/07388551.2015.1128876.
Tembhare P, Badrinath Y, Ghogale S, Patkar N, Dhole N,Dalavi P, et al. A novel and easy FxCycleTM violet basedflow cytometric method for simultaneous assessment ofDNA ploidy and six-color immunophenotyping. Cytom PartA 2016; 89 (3): 281-91. doi: 10.1002/cyto.a.22803.
Kalina T, Lundsten K, Engel P. Relevance of antibody validationfor flow cytometry. Cytom Part A 2020; 97 (2): 126-36.doi: 10.1002/cyto.a.23895.
Belver L, Ferrando A. The genetics and mechanisms of Tcell acute lymphoblastic leukaemia. Nat Rev Cancer 2016;16 (8): 494-507. doi: 10.1038/nrc.2016.63.
DiGiuseppe JA, Wood BL. Applications of flow cytometricimmunophenotyping in the diagnosis and posttreatmentmonitoring of B and T lymphoblastic leukemia/lymphoma.Cytom Part B Clin Cytom 2019; 96 (4): 256-65. doi: 10.1002/cyto.b.21833.
Dong M, Zhang X, Yang Z, Wu S, Ma M, Li Z, et al. Patientsover 40 years old with precursor T-cell lymphoblasticlymphoma have different prognostic factors comparingto the youngers. Sci Rep 2018; 8 (1): 1-7. doi: 10.1038/s41598-018-19565-x.
Sun J, Wang L, Liu Q, Tárnok A, Su X. Deep learning-basedlight scattering microfluidic cytometry for label-free acutelymphocytic leukemia classification. Biomed Opt Express2020; 11 (11): 6674. https://doi.org/10.1364/BOE.405557.
Loghavi S, Kutok JL, Jorgensen JL. B-acute lymphoblasticleukemia/lymphoblastic lymphoma. Am J Clin Pathol 2015;144 (3): 393-410. https://doi.org/10.1309/AJCPAN7BH5DNYWZB.
Noronha EP, Codeço Marques LV, Andrade FG, SantosThuler LC, Terra-Granado E, Pombo-De-Oliveira MS. Theprofile of immunophenotype and genotype aberrations insubsets of pediatric T-cell acute lymphoblastic leukemia.Front Oncol 2019; 9: 1-10. doi: 10.3389/fonc.2019.00316.
Rocha JMC, Xavier SG, Souza ME de L, Murao M, de OliveiraBM. Comparison between flow cytometry and standardPCR in the evaluation of MRD in children with acutelymphoblastic leukemia treated with the GBTLI LLA–2009protocol. Pediatr Hematol Oncol 2019; 36 (5): 287-301.doi: 10.1080/08880018.2019.1636168.
Rytting ME, Jabbour EJ, O’Brien SM, Kantarjian HM.Acute lymphoblastic leukemia in adolescents and youngadults. Cancer 2017; 123 (13): 2398-403. doi: 10.1089/jayao.2021.0033.
Ministerio de salud y Protección Social. Guía de prácticaclínica para la detección, tratamiento y seguimiento deleucemias linfoblásticas y mieloide en población mayorde 18 años. Circulation 2017; 126: 37.
Wu J, Jia S, Wang C, Zhang W, Liu S, Zeng X, et al. Minimalresidual disease detection and evolved IGH clones analysisin acute B lymphoblastic leukemia using IGH deepsequencing. Front Immunol 2016; 7: 403. doi: 10.3389/fimmu.2016.00403.
Keegan A, Charest K, Schmidt R, Briggs D, Deangelo DJ, Li B,et al. Flow cytometric minimal residual disease assessmentof peripheral blood in acute lymphoblastic leukaemiapatients has potential for early detection of relapsed extramedullarydisease. J Clin Pathol 2018; 1-6. doi: 10.1136/jclinpath-2017-204828.
Fossat C, Roussel M, Arnoux I, Asnafi V, Brouzes C,Garnache-Ottou F, et al. Methodological aspects of minimalresidual disease assessment by flow cytometry inacute lymphoblastic leukemia: A french multicenter study.Cytom Part B - Clin Cytom 2015; 88 (1): 21-9. doi: 10.1002/cyto.b.21195.
Thulasi Raman R, Anurekha M, Lakshman V, BalasubramaniamR, Ramya U, Revathi R. Immunophenotypicmodulation in pediatric B lymphoblastic leukemia andits implications in MRD detection. Leuk Lymphoma 2020;61 (8): 1974-80. https://doi.org/10.1080/10428194.2020.1742902.
Ravandi F, Jorgensen JL, O’Brien SM, Jabbour E, ThomasDA, Borthakur G, et al. Minimal residual disease assessedby multi-parameter flow cytometry is highly prognostic inadult patients with acute lymphoblastic leukaemia. Br JHaematol 2016; 172 (3): 392-400. doi: 10.1111/bjh.13834.
Li HF, Meng WT, Jia YQ, Jiang NG, Zeng TT, Jin YM, et al.Development-associated immunophenotypes reveal theheterogeneous and individualized early responses of adultB-acute lymphoblastic leukemia. Med (United States) 2016;95 (34). doi: 10.1097/MD.0000000000004128.
Li SQ, Fan QZ, Xu LP, Wang Y, Zhang XH, Chen H, et al. Differenteffects of pre-transplantation measurable residualdisease on outcomes according to transplant modalityin patients with Philadelphia chromosome positive ALL.Front Oncol 2020; 10 1-13. doi: 10.3389/fonc.2020.00320.
Keeney M, Hedley BD, Chin-Yee IH. Flow cytometry—Recognizingunusual populations in leukemia and lymphomadiagnosis. Int J Lab Hematol 2017; 39: 86-92. https://doi.org/10.1111/ijlh.12666.
Marsán-Suárez V, Macías-Abraham C, Díaz-DomínguezG, Morales-Garrido Y, Lam-Díaz RM, Machín-García S,González-Otero A, et al. Expresión del antígeno CD45 en laLeucemia Linfoide aguda pediátrica. Rev Cubana HematolInmunol Hemoter 2017; 33 (2).
Wood BL. Principles of minimal residual disease detectionfor hematopoietic neoplasms by flow cytometry. CytometryB Clin Cytom 2016; 90 (1): 47-53. doi: 10.1002/cyto.b.21239.
Chatterjee T, Mallhi RS, Venkatesan S. Minimal residualdisease detection using flow cytometry: Applications inacute leukemia. Med J Armed Forces India 2016; 72 (2):152-6. doi: 10.1016/j.mjafi.2016.02.002.
Chen X, Wood BL. Monitoring minimal residual diseasein acute leukemia: Technical challenges and interpretivecomplexities. Blood Rev 2017; 31 (2): 63-75. doi: 10.1016/j.blre.2016.09.006.
Wenzinger C, Williams E, Gru AA. Updates in the pathologyof precursor lymphoid neoplasms in the Revised Fourth Editionof the WHO Classification of Tumors of Hematopoieticand Lymphoid Tissues. Curr Hematol Malig Rep 2018; 13(4): 275-88. doi: 10.1007/s11899-018-0456-8.
Xia M, Zhang H, Lu Z, Gao Y, Liao X, Li H. Key markers ofminimal residual disease in childhood acute lymphoblasticleukemia. J Pediatr Hematol Oncol 2016; 38 (6): 418-22.doi: 10.1097/MPH.0000000000000624.
Popov A, Henze G, Verzhbitskaya T, Roumiantseva J, LagoykoS, Khlebnikova O, et al. Absolute count of leukemicblasts in cerebrospinal fluid as detected by flow cytometryis a relevant prognostic factor in children with acute lymphoblasticleukemia. J Cancer Res Clin Oncol 2019; 145 (5):1331-9. doi: 10.1007/s00432-019-02886-3.
McShane LM, Smith MA. Prospects for minimal residualdisease as a surrogate endpoint in pediatric acute lymphoblasticleukemia clinical trials. JNCI Cancer Spectrum2018; 2 (4): pky070. https://doi.org/10.1093/jncics/pky070
Karawajew L, Dworzak M, Ratei R, Rhein P, Gaipa G, BuldiniB, et al. Minimal residual disease analysis by eight-colorflow cytometry in relapsed childhood acute lymphoblasticleukemia. Haematologica 2015; 100 (7): 935-44. doi:10.3324/haematol.2014.116707.
Bruggemann M, Kotrova M. Minimal residual disease inadult ALL: Technical aspects and implications for correctclinical interpretation. Blood Adv 2017; 1 (25): 2456-66.doi: 10.1182/asheducation-2017.1.13.
Walter RB, Gooley TA, Wood BL, Milano F, Fang M, SorrorML, et al. Impact of pretransplantation minimal residualdisease, as detected by multiparametric flow cytometry, onoutcome of myeloablative hematopoietic cell transplantationfor acute myeloid leukemia. J Clin Oncol 2011; 29 (9):1190-7. doi: 10.1200/JCO.2010.31.8121.
Gökbuget N. How should we treat a patient with relapsedPh-negative B-ALL and what novel approaches are beinginvestigated? Best Pract Res Clin Haematol 2017; 30 (3):261-74. doi: 10.1016/j.beha.2017.07.010.
Tembhare PR, Narula G, Khanka T, Ghogale S, Chatterjee G,Patkar NV, et al. Post-induction measurable residual diseaseusing multicolor flow cytometry is strongly predictive ofinferior clinical outcome in the real-life management ofchildhood T-cell acute lymphoblastic leukemia: A studyof 256 patients. Front Oncol 2020; 10: 577. doi: 10.3389/fonc.2020.00577.
Schrappe M. Detection and management of minimalresidual disease in acute lymphoblastic leukemia. Hematol(United States) 2014; 2014 (1): 244-9. https://doi.org/10.1182/asheducation-2014.1.244.
Kruse A, Abdel-Azim N, Kim HN, Ruan Y, Phan V, Ogana H,et al. Minimal residual disease detection in acute lymphoblasticleukemia. Int J Mol Sci 2020; 21 (3). doi: 10.3390/ijms21031054.
Abou Dalle I, Jabbour E, Short NJ. Evaluation and managementof measurable residual disease in acute lymphoblasticleukemia. Ther Adv Hematol 2020; 11: 204062072091002.doi: 10.1177/2040620720910023.
Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM,Buske C, et al. Acute lymphoblastic leukaemia in adultpatients: ESMO clinical practice guidelines for diagnosis,treatment and follow-up. Ann Oncol 2016; 27: v69-82.https://doi.org/10.1093/annonc/mdw025.
Pui C-H, Pei D, Raimondi SC, Coustan-Smith E, Jeha S,Cheng C, et al. Clinical impact of minimal residual diseasein children with different subtypes of acute lymphoblasticleukemia treated with Response-Adapted therapy. Leukemia2017; 31 (2): 333-9. doi: 10.1038/leu.2016.234.
Campana D, Pui C. Evidence-based focused review minimalresidual disease – guided therapy in childhood acutelymphoblastic leukemia case presentations. Blood 2017;129 (14): 1913-9. doi: 10.1182/blood-2016-12-725804.
Jabbour E, O’Brien S, Konopleva M, Kantarjian H. New insightsinto the pathophysiology and therapy of adult acutelymphoblastic leukemia. Cancer 2015; 121 (15): 2517-28.doi: 10.1002/cncr.29383.
Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia.Hematology 2016; 2016 (1): 580-8. doi: 10.1182/asheducation-2016.1.580.