2021, Número 3
<< Anterior Siguiente >>
Biotecnol Apl 2021; 38 (3)
Efecto del 6-BAP y el tiempo de inmersión en la multiplicación de brotes de Bambusa vulgaris Schrad. ex Wendl en sistemas de inmersión temporal
Garcia RY, Freire SM, Barbón R, Torres GS
Idioma: Español
Referencias bibliográficas: 28
Paginas: 3201-3205
Archivo PDF: 333.01 Kb.
RESUMEN
Las plantas de Bambusa vulgaris Schrad. ex Wendl constituyen una opción viable para generar beneficios medioambientales, sociales y económicos. Sin embargo, existen problemas para la propagación vía organogénesis de la especie, tales como el bajo coeficiente de multiplicación in vitro. La investigación tuvo como objetivo determinar el efecto de la 6-bencilaminopurina y del tiempo de inmersión en la multiplicación, morfofisiología y bioquímica de los brotes de B. vulgaris en sistemas de inmersión temporal. Se evaluaron variables morfofisiológicas y bioquímicas en los brotes cultivados bajo tres concentraciones de 6-BAP (6.6; 13.2 y 26.4 μM) y sin él, y tiempos de inmersión de uno, dos y tres minutos, durante 30 días de cultivo. En estos sistemas la menor concentración de 6-BAP (6.6 μM) y un tiempo de inmersión de dos minutos favorecieron la emisión de nuevos brotes, lo cual se asoció a un incremento en el contenido de clorofilas totales, lignina y fenoles totales en los brotes. A partir de los resultados se estableció un protocolo de propagación vía organogénesis de plantas de B. vulgaris en sistemas de inmersión temporal, con una alta emisión de nuevos brotes in vitro, el cual puede ser aplicado a otras especies de bambúes, y específicamente a B. vulgaris.
REFERENCIAS (EN ESTE ARTÍCULO)
MINAG. Lista oficial de variedades comerciales 2017-2018. Registro de variedades comerciales de certificación de semillas. 10. Especies Forestales. La Habana: MINAG; 2017.
Cordero-Miranda E. Propuesta para el manejo sostenible de Bambusa vulgaris Schrader ex Wendl con objetivo protector en diferentes condiciones ecológicas del río Cuyaguateje, Pinar del Río. Tesis en opción al grado científico de Doctor en Ciencias Ecológicas, Universidad de Pinar del Río, Pinar del Río; 2010.
Sandhu M, Wani S, Jiménez V. In vitro propagation of bamboo species through axillary shoot proliferation: A review. Plant Cell, Tissue Organ Cult. 2018;132(1):27- 53.
Ramanayake S, Meemaduma V, WeerawardeneT. In vitro shoot proliferation andenhancement of rooting for the large-scalepropagation of yellow bamboo (Bambusavulgaris Striata). Scientia Horticult.2006;110(1):109-13.
Carvalho L, Ozudogru E, Lambardi M,Paiva L. Temporary immersion system formicropropagation of tree species: a Bibliographicand Systematic Review. NotulaeBotanicae Horti Agrobotanici Cluj-Napoca.2019;47(2):269-77.
Quiala E. Efecto de la 6-bencilaminopurinaen la morfo-anatomía y la fisiologíade brotes de Tectona grandis L. cultivadosen sistemas de inmersión temporal (Tesisde doctorado, Universidad Central “MartaAbreu” de Las Villas, Instituto de Biotecnologíade las Plantas; 2012.
Holst Sanjuán A. Efecto del sistemade inmersión temporal (RITA®) sobre eldesarrollo de plántulas in vitro de Guaduaangustifolia kunth (Poaceae: Bambusoideae)y su posterior aclimatización. (2010);pp 21-29.
Murashige T, Skoog F. A revised mediumfor rapid growth and bio assayswith tobacco tissue cultures. Physiol Plant.1962;15(3):473-97.
Bandyopadhyay T, Gangopadhyay G,Poddar R, Mukherjee K. Trichomes theirdiversity, distribution and density in acclimatizationof Teak (Tectona grandis L.)plants grown in vitro. Plant Cell TissueOrgan Cult. 2004;78(2):113-21.
Mahmood M, Bidabadi S, GhobadiC, Gray D. Effects of methyljasmanatetreatment on alleviation of polyethyleneglycol-mediated water stress in banana(Musa acuminatae cv. Berangan, AAA)shoot tip cultures. Plant Growth Regulation.(2012); 68(2):161-9.
Bray H, Thorpe W. Analysis of phenoliccompounds of interest in metabolism.Methods Biochem Anal. 1954:27-52.
Kirk T, Obst J. Lignin determination.Methods Enzymol. 1988;161:87-10.
Rosa W, Martins J, Rodrigues E, deAlmeida Rodrigues L, Gontijo A, FalquetoA. Photosynthetic apparatus performancein function of the cytokinins used duringthe in vitro multiplication of Aechmeablanchetiana (Bromeliaceae). Plant CellTissue Organ Cult. 2018;133(3):339-50.
Quiala E, Cañal M, Meijón M, RodríguezR, Chávez M, Valledor L, et al. Morphologicaland physiological responses ofproliferating shoots of teak to temporaryimmersion and BA treatments. Plant CellTissue Organ Cult. 2012;109(2):223-34.
Dobránszki J, Mendler-DrienyovszkiN. Cytokinin-induced changes in thechlorophyll content and fluorescenceof in vitro apple leaves. J Plant Physiol.2014;171(16):1472-8.
Cortleven A, Schmülling T. Regulationof chloroplast development and functionby cytokinin. J Exp Bot. 2015;66(16):4999-5013.
Martins J, Santos E, Rodrigues L, GontijoA, Falqueto A. Effects of 6- benzylaminopurineon photosystem II functionality andleaf anatomy of in vitro cultivated Aechmeablanchetiana. Biol Plant. 2018;62(4):793-800.
Dewir Y, Chakrabarty D, Hahn EJ, PaekK. A simple method for mass propagationof Spathiphyllum cannifolium using anairlift bioreactor. In Vitro Cell Develop BiolPlant. 2006;42(3):291-7.
Sharma P, Jha A, Dubey R, PessarakliM. Reactive oxygen species, oxidative damage,and antioxidative defense mechanismin plants under stressful conditions. JBotany. 2012;107(11):1811-22.
Dixon, R, Paiva N. Stress-inducedphenylpropanoid metabolism. Plant Cell.1995;7(7):1085-97.
Grace S. Phenolics antioxidants. In:Antioxidants and reactive oxygen speciesin plants. Smirnoff N (Editors). London:Blackwell Publishing LTD, UK; 2005. p.141-68.
Mamedes-Rodrigues T, Batista D,Napoleão T, Fortini E, Cruz A, Costa M,et al. Regulation of cell wall developmentin Brachypodium distachyon in vitro asaffected by cytokinin and gas exchange.Plant Cell Tissue Organ Cult. 2019;136(2):207-19.
Martre P, Lacan D, Just D, Teisson C.Physiological effects of temporary immersionon Hevea brasiliensis callus. Plant CellTissue Organ Cult. 2001;67(1):25-35.Olate M. In vitro multiplication of Eucalyptusglobulus by temporary immersionsystem. Bosque. 2011;32(2):147-54.
Gonzalez R, Rios S, Avilés F, Sánches-Olate M. In vitro multiplication of Eucalyptusglobulus by temporary immersionsystem. Bosque. 2011;32(2):147-54.
Tian J, Jiang F, Wu Z. The apoplasticoxidative burst as a key factor of hyperhydricityin garlic plantlet in vitro. Plant CellTissue Organ Cult. 2015;120(2):571-84.
Isah T. Changes in the biochemicalparameters of albino, hyperhydric andnormal green leaves of Caladium bicolorcv “Bleeding hearts” in vitro long-termcultures. J Photochem Photobiol B: Biology.2019;191:88-98.
Kevers C, Franck T, Strasser R, DommesJ, Gaspar T. Hyperhydricity of micropropagatedshoots: a typically stress-inducedchange of physiological state. Plant CellTissue Organ Cult. 2004;77(2):181-91.
Dewir Y. Biochemical and physiologicalaspects of hyperhydricity in liquid culturesystem. In: Paek K-Y, Murthy HN, Zhong ZZ(Eds.). Production of biomass and bioactivecompounds using bioreactor technology.Dordrecht: Springer; 2014. p. 693-709.