2022, Número 2
<< Anterior Siguiente >>
Rev Educ Bioquimica 2022; 41 (2)
¿Cómo controlan las leguminosas el número de nódulos para evitar comprometer su crecimiento y desarrollo?
Isidra-Arellano MC, Valdés-López O
Idioma: Español
Referencias bibliográficas: 38
Paginas: 51-65
Archivo PDF: 525.62 Kb.
RESUMEN
Las leguminosas tienen la capacidad de asociarse simbióticamente con bacterias
fijadoras de nitrógeno (rizobios). El establecimiento de esta simbiosis no sólo permite
a las leguminosas crecer en suelos deficientes de nitrógeno, sino que también
permite incorporar nitrógeno asimilable (e.g., amonio) para los posteriores cultivos
a través de cultivos rotatorios. Obtener nitrógeno asimilable a través de la simbiosis
con rizobios, implica un gran gasto energético para la leguminosa. Para evitar comprometer
su desarrollo, las leguminosas han desarrollado programas genéticos que
les permiten continuar esta simbiosis sin comprometer sus necesidades metabólicas.
En esta revisión, se discuten los avances que se han hecho para entender los mecanismos
genéticos que permiten a las leguminosas realizar simbiosis con rizobios
sin comprometer su desarrollo. Asimismo, proponemos perspectivas que fomentan el
pensamiento crítico y que conllevarán al planteamiento de experimentos que ayuden
a comprender de forma integral las adaptaciones que han tenido las leguminosas
para mantener la simbiosis con bacterias fijadoras de nitrógeno a través del tiempo.
REFERENCIAS (EN ESTE ARTÍCULO)
Ke J, Wang B, and Yoshikuni Y. (2021)Microbiome engineering; synthetic biology ofplant-associate microbiomes in sustainableagriculture. Trends Biotecnol. 39: 244-261.
Murray JD, Liu, C W, Chen Y, Miller AJ (2017)Nitrogen sensing in legumes. J Exp Bot. 68:1919-1926.
Castro-Guerrero NA, Isidra-Arellano MC,Mendoza-Cozatl DG, Valdés-López O (2016)Common Bean: A legume model on the risefor unraveling responses and adaptations toiron, zinc, and phosphate deficiencies. FrontPlant Sci.7:600.
Crews TE, Peoples MB (2004) Legume versusfertilizer sources of nitrogen: ecologicaltradeoffs and human needs. Agric. EcosystEnviron. 102: 279-297.
Jensen ES, Peoples MB, Boddey RM, GresshoffPM, Hauggaard-Nielsen H, Alves BJ, MorrisonMJ (2012) Legumes for mitigation of climatechange and the provision of feedstock forbiofuels and biorefineries. A review. AgronSustain Dev. 32: 329-364.
Venkateshwaran M, Volkening JD, SussmanMR, Ane JM (2013). Symbiosis and the socialnetwork of higher plants. Curr Opin Plant Biol.16:118–127.
Oldroyd G (2013) Speak, friend, and enter:signalling systems that promote beneficialsymbiotic associations in plants. Nat RevMicrobiol. 11: 252-263.
Dénarié J, Debellé F, Promé JC (1996) Rhizobiumlipo-chitooligosaccharide nodulation factors:signaling molecules mediating recognitionand morphogenesis. Annu Rev Biochem. 65:503–535.
Roy S, Liu W, Nandety RS, Crook A, MysoreKS, Pislariu CI, Frugoli J, Dickstein R,Udvardi MK, (2020) Celebrating 20 years ofgenetic discoveries in legume nodulation andsymbiotic nitrogen fixation. Plant Cell 32: 15-41.
DiCenzo GC, Tesi M, Pfau T, Mengoni A, andFondi M (2020) Genome-scale metabolicreconstruction of the symbiosis betweena leguminous plant and a nitrogen-fixingbacterium. Nat Commun 11: 2574.
Ferguson BJ, Mens C, Hastwell AH, Zhang M,Su H, Jones CH, Chu X, Gresshoff PM (2019)Legume nodulation: The host controls theparty. Plant Cell Environ. 42: 41-51.
Soyano T, Hirakawa H, Sato S, Hayashi M,Kawaguchi M (2014) NODULE INCEPTIONcreates a long-distance negative feedbackloop involved in homeostatic regulation ofnodule organ production. Proc Natl Acad SciU.S.A. 111:14607- 1461.
Hastwell AH, Gresshoff PM, Ferguson BJ (2015)The structure and activity of nodulationsuppressingCLE peptide hormones of legumes.Funct Plant Biol. 42: 229-238.
Yoro E, Nishida H, Ogawa-Ohnishi M, YoshodaC, Suzaki T, Matsubayashi Y, KawaguchiM (2019). PLENTY, a hydroxyprolineO-arabinosyltransferase, negatively regulatesroot nodule symbiosis in Lotus japonicus. JExp Bot. 70: 507-517.
Kassaw T, Nowark S, Schnabel E, Frugoli J(2017) ROOT DETERMINED NODULATION1is required for M. truncatula CLE12, but notCLE13, peptide signaling through the SUNNreceptor kinase. Plant Physiol. 174: 2445-2456.
Corcilius L, Hastwell AH, Zhang M, WilliamsJ, Mackay JP, Gresshoff PM, Ferguson BJ,Payne RJ (2017) Arabinosylation modulatesthe growth-regulating activity of the peptidehormone CLE40a from soybean. Cell ChemBiol. 24:1347-1355.e7.
Miyazawa H, Oka-Kira E, Sato N, TakahashiH, Wu GJ, Sato S, Hayashi M, Betsuyaku S,Nakazono M, Tabata S, Harada K, Sawa S,Fukuda H, Kawaguchi M. (2010) The receptorlikekinase KLAVIER mediates systemicregulation of nodulation and non-symbioticshoot development in Lotus japonicus.Development. 137:4317-25.
Crook AD, Schnabel EL, Frugoli JA (2016) Thesystemic nodule number regulation kinaseSUNN in Medicago truncatula interacts withMtCLV2 and MtCRN. Plant J. 88: 108-119.
Sasaki T, Suzaki T, Soyano T, Kojima M,Sakakibara H, Kawaguchi M (2014) Shootderivedcytokinins systemically regulate rootnodulation. Nat Commun. 5:4983.
Mens C, Li D, Haaima LE, Gresshoff PM,Ferguson BJ (2018) Local and SystemicEffect of Cytokinins on Soybean Nodulationand Regulation of Their IsopentenylTransferase (IPT) Biosynthesis GenesFollowing Rhizobia Inoculation. Front PlantSci. 9:1150.
Tsikou D, Yan Z, Holt DB, Abel NB, Reid DE,Madsen LH, Bhasin H, Sexauer M, StougaardJ, Markmann K (2018) Systemic control oflegume susceptibility to rhizobial infection bya mobile microRNA. Science. 362: 233-236.
Okuma N, Soyano T, Suzaki T, KawaguchiM. (2020) MIR2111-5 locus and shootaccumulatedmature miR2111 systemicallyenhance nodulation depending on HAR1 inLotus japonicus. Nat Commun.11:5192.
Takahara M, Magori S, Soyano T, OkamotoS, Yoshida C, Yano K, Sato S, Tabata S,Yamaguchi K, Shigenobu S, Takeda N, SuzakiT, Kawaguchi M (2013) Too much love, anovel Kelch repeat-containing F-box protein,functions in the long-distance regulation ofthe legume-Rhizobium symbiosis. Plant CellPhysiol. 54:433-47.
Mohd-Radzman NA, Laffont C, Ivanovici A,Patel N, Reid D, Stougaard J, Frugier F, IminN, Djordjevic MA (2016) Different pathwaysact downstream of the CEP1 peptide receptorCRA2 to regulate lateral root and noduledevelopment. Plant Physiol. 171: 2536–2548.
Gautrat P, Laffont C, Frugier F (2020) CompactRoot Architecture 2 Promotes Root Competencefor Nodulation through the miR2111 SystemicEffector. Curr Biol. 30:1339-1345.e3.
Sorroche F, Walch M, Zou L, Rengel D, Maillet F,Gibelin-Viala C, Poinsot V, Chervin C, Masson-Boivin C, Gough C, Batut J, Garnerone AM(2019) Endosymbiotic Sinorhizobium melilotimodulate Medicago root susceptibility tosecondary infection via ethylene. New Phytol.223:1505-1515.
Miri M, Janakirama P, Huebert T, RossL, McDowell T, Orosz K, Markmann K,Szczyglowski K. (2019) Inside out: rootcortex-localized LHK1 cytokinin receptor limitsepidermal infection of Lotus japonicus roots byMesorhizobium loti. New Phytol. 222:1523-1537.
Yoro E, Suzaki T, and Kawaguchi M. (2019) CLEHAR1systemic signaling and NIN-mediatedlocal signaling suppress the increased rhizobialinfection in the daphne mutant of Lotusjaponicus. Mol Plant Molecular Int. 33: 320-327.
Garnerone AM, Sorroche F, Zou L, Mathieu-Demazière C, Tian C F, Masson-Boivin C,Batut J. (2018). NsrA, a predicted β-Barrelouter membrane protein involved in plantsignal perception and the control of secondaryinfection in Sinorhizobium meliloti. J Bacteriol.200: e00019-18.
Reid DE, Ferguson BJ, Gresshoff PM. (2011)Inoculation- and nitrate-induced CLE peptidesof soybean control NARK-dependent noduleformation. Mol. Plant Microbe Interact. 24:606–618.
Mens C, Hastwell AH, Su H, GresshoffPM, Mathesius U, Ferguson BJ (2021)Characterization of Medicago truncatula CLE34and CLE35 in nitrate and rhizobia regulationof nodulation. New Phytol. 229:2525-2534.
Nishida H, Tanaka S, Handa Y, Ito M, SakamotoY, Matsunaga S, Betsuyaku S, Miura K, SoyanoT, Kawaguchi M, Suzaki T (2018) A NIN-LIKEPROTEIN mediates nitrate-induced control ofroot nodule symbiosis in Lotus japonicus. NatCommun.9:499.
Moreau C, Gautrat P, abd Frugier F. (2021)Nitrate-induced CLE35 signaling peptidesinhibit nodulation through the SUNN receptorand miR2111 perception. Plant Physiol.185:1216-1228.
Hernández G, Valdés-López O, Ramírez M,Goffard N, Weiller G, Aparicio-Fabre R, FuentesSI, Erban A, Kopka J, Udvardi MK, Vance CP(2009) Global changes in the transcript andmetabolic profiles during symbiotic nitrogenfixation in phosphorus-stressed common beanplants. Plant Physiol. 151: 1221-1238.
Isidra-Arellano MC, Reyero-Saavedra MDR,Sánchez-Correa MDS, Pingault L, Sen S, JoshiT, Girard L, Castro-Guerrero NA, Mendoza-Cozatl DG, Libault M, Valdés-López O (2018)Phosphate deficiency negatively affects earlysteps of the symbiosis between common beanand rhizobia. Genes (Basel). 9:498.
Isidra-Arellano MC, Pozas-Rodríguez EA,Reyero-Saavedra MDR, Arroyo-CanalesJ, Ferrer-Orgaz S, Correa-Sánchez MDS,Cardenas L, Covarrubias AA, Valdés-López O(2020) Inhibition of legume nodulation by Pideficiency is dependent on the autoregulation ofnodulation (AON) pathway. Plant J. 103:1125-1139.
Rubio LM, Ludden PW. (2005) Maturationof Nitrogensase: a Biochemical puzzle. JBacteriol. 187: 405-414.
Dixon R, Kahn D. (2004) Genetic regulation ofbiological nitrogen fixation. Nat Rev Microbiol.2: 621-631.