2022, Número 3
<< Anterior Siguiente >>
Med Int Mex 2022; 38 (3)
Relojes circadianos y ayuno prolongado: potencial terapéutico en el tratamiento de las enfermedades metabólicas
Fernández-De La Torre M, Hernández-Díaz P, Aspe-Viñolas J, Ahumada-Ayala M
Idioma: Español
Referencias bibliográficas: 74
Paginas: 649-664
Archivo PDF: 287.31 Kb.
RESUMEN
Los ritmos circadianos son fenómenos biológicos que se repiten de forma cíclica cada
24 horas, en sincronía con el movimiento rotatorio de la Tierra. Son responsables de
la armonía de diversas funciones fisiológicas y permiten conservar la homeostasia
anticipando la respuesta metabólica ante diversos eventos recurrentes. Los osciladores
circadianos son regulados por mecanismos genéticos intracelulares. El reloj
circadiano central se encuentra en los núcleos supraquiasmáticos del hipotálamo
y está en sincronía con los relojes circadianos periféricos, localizados en el resto
de los tejidos. Existen señales externas denominadas gatillos o
zeitgebers, que permiten
la sincronización y armonía de los relojes circadianos. El
zeitgeber principal
del reloj central es la alternancia de los periodos de luz/oscuridad. Mientras que el
horario y composición de los alimentos, los periodos de sueño y la actividad física
son
zeitgebers con acción predominante sobre los relojes periféricos. El estilo de
vida moderno, con el incremento del uso de las pantallas electrónicas emisoras de
luz azul, los horarios laborales nocturnos, las dietas altas en grasa y los patrones
irregulares en los horarios de alimentación puede interferir con la correcta alineación
de los relojes circadianos. La desincronía circadiana crónica participa en la
patogénesis de las enfermedades metabólicas, como la diabetes mellitus tipo 2,
la hipertensión arterial sistémica, el síndrome metabólico y la obesidad. El ayuno
nocturno prolongado es una herramienta para ajustar los relojes circadianos. Una
ventana de alimentación reducida, con periodos de ingesta calórica regular, permite
una respuesta metabólica oportuna en óptima sincronía con los relojes circadianos.
El alineamiento de los relojes circadianos es un instrumento coadyuvante potencial
para prevenir y tratar las enfermedades metabólicas.
REFERENCIAS (EN ESTE ARTÍCULO)
Allada R, Bass J. Circadian mechanisms in medicine. NEngl J Med 2021; 384 (6): 550-561. doi: 10.1056/NEJMra1802337.
Castellanos MÁ, Escobar C. De la cronobiología a la cronomedicina.Rev Fac Med Univ Nac Auton Mex 2016; 59(2): 15-23.
Klein DC, Moore RY, Reppert SM, editors. Suprachiasmaticnucleus: The mind’s clock. New York: Oxford UniversityPress; 1991.
Ralph MR, Foster RG, Davis FC, Menaker M. Transplantedsuprachiasmatic nucleus determines circadian period.Science 1990; 247 (4945): 975-978. doi: 10.1126/science.2305266.
Provencio I, Rodriguez IR, Jiang G, Hayes WP, MoreiraEF, Rollag MD. A novel human opsin in the inner retina. JNeurosci 2000; 20 (2): 600-605. doi: 10.1523/JNEUROSCI.20-02-00600.2000.
Ibañez, C. Discoveries of molecular mechanisms controllingthe circadian rhythm. NobelPrize.org. Nobel Prize OutreachAB 2021. Sun. 24 Oct 2021.
Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster.Proc Natl Acad Sci USA 1971; 68 (9): 2112-6. doi:10.1073/pnas.68.9.2112.
Takahashi JS. Transcriptional architecture of the mammaliancircadian clock. Nat Rev Genet 2017; 18 (3): 164-179. doi: 10.1038/nrg.2016.150.
Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J,Amin RH, Granneman JG, Piomelli D, Leff T, Sassone-CorsiP. PER2 controls lipid metabolism by direct regulation ofPPARγ. Cell Metab 2010; 12 (5): 509-520. doi: 10.1016/j.cmet.2010.10.005.
Han DH, Lee YJ, Kim K, Kim CJ, Cho S. Modulation of glucocorticoidreceptor induction properties by core circadianclock proteins. Mol Cell Endocrinol 2014; 383 (1-2): 170-180. doi: 10.1016/j.mce.2013.12.013.
Kriebs A, Jordan SD, Soto E, Henriksson E, Sandate CR,Vaughan ME, Chan AB, Duglan D, Papp SJ, Huber AL, AfetianME, Yu RT, Zhao X, Downes M, Evans RM, Lamia KA.Circadian repressors CRY1 and CRY2 broadly interact withnuclear receptors and modulate transcriptional activity.Proc Natl Acad Sci USA 2017; 114 (33): 8776-8781. doi:10.1073/pnas.1704955114.
Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, AlbrechtU. The mammalian clock component PERIOD2 coordinatescircadian output by interaction with nuclear receptors.Genes Dev 2010; 24 (4): 345-357. doi: 10.1101/gad.564110.
Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, KreppelF, Mostoslavsky R, Alt FW, Schibler U. SIRT1 regulatescircadian clock gene expression through PER2 deacetylation.Cell 2008; 134 (2): 317-328. doi: 10.1016/j.cell.2008.06.050.
Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, HirayamaJ, Chen D, Guarente LP, Sassone-Corsi P. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediatedchromatin remodeling and circadian control. Cell 2008; 134(2): 329-340. doi: 10.1016/j.cell.2008.07.002.
Reppert SM, Weaver DR. Coordination of circadian timingin mammals. Nature 2002; 418 (6901): 935-941. doi:10.1038/nature00965.
Reinke H, Asher G. Crosstalk between metabolism andcircadian clocks. Nat Rev Mol Cell Biol 2019; 20 (4): 227-241. doi: 10.1038/s41580-018-0096-9.
Stephan FK. The "other" circadian system: food as aZeitgeber. J Biol Rhythms 2002; 17 (4): 284-292. doi:10.1177/074873040201700402.
Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, JonkerJW, Downes M, Evans RM. Cryptochromes mediate rhythmicrepression of the glucocorticoid receptor. Nature 2011;480 (7378): 552-6. doi: 10.1038/nature10700.
Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, HirotaT, Nusinow DA, Sun X, Landais S, Kodama Y, Brenner DA,Montminy M, Kay SA. Cryptochrome mediates circadianregulation of cAMP signaling and hepatic gluconeogenesis.Nat Med 2010; 16 (10): 1152-1156. doi: 10.1038/nm.2214.
Dollet L, Pendergrast LA, Zierath JR. The role of themolecular circadian clock in human energy homeostasis.Curr Opin Lipidol 2021; 32 (1): 16-23. doi: 10.1097/MOL.0000000000000722.
Gabriel BM, Zierath JR. Circadian rhythms and exercise-resettingthe clock in metabolic disease. Nat Rev Endocrinol2019; 15 (4): 197-206. doi: 10.1038/s41574-018-0150-x.
Scheving LA. Biological clocks and the digestive system.Gastroenterology 2000; 119 (2): 536-549. doi: 10.1053/gast.2000.9305
Scheving LE, Tsai TH, Scheving LA. Chronobiology of theintestinal tract of the mouse. Am J Anat 1983; 168 (4):433-465. doi: 10.1002/aja.1001680405.
Hoogerwerf WA. Role of clock genes in gastrointestinalmotility. Am J Physiol Gastrointest Liver Physiol 2010; 299(3): G549-555. doi: 10.1152/ajpgi.00147.2010.
Iwashina I, Mochizuki K, Inamochi Y, Goda T. Clock genesregulate the feeding schedule-dependent diurnal rhythmchanges in hexose transporter gene expressions throughthe binding of BMAL1 to the promoter/enhancer andtranscribed regions. J Nutr Biochem 2011; 22 (4): 334-343.doi: 10.1016/j.jnutbio.2010.02.012
Peschke E, Peschke D. Evidence for a circadian rhythm ofinsulin release from perifused rat pancreatic islets. Diabetologia1998; 41 (9): 1085-92. doi: 10.1007/s001250051034.
Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, KoCH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP,Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X,Takahashi JS, Bass J. Disruption of the clock componentsCLOCK and BMAL1 leads to hypoinsulinaemia and diabetes.Nature 2010; 466 (7306): 627-631. doi: 10.1038/nature09253.
Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ. Anintrinsic circadian clock of the pancreas is required fornormal insulin release and glucose homeostasis in mice.Diabetologia 2011; 54 (1): 120-124. doi: 10.1007/s00125-010-1920-8.
Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M,Mangelsdorf DJ, Evans RM. Nuclear receptor expressionlinks the circadian clock to metabolism. Cell 2006; 126 (4):801-810. doi: 10.1016/j.cell.2006.06.050.
Li MD, Li CM, Wang Z. The role of circadian clocks inmetabolic disease. Yale J Biol Med 2012; 85 (3): 387-401.
Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivatorPGC-1alpha integrates the mammalian clock and energymetabolism. Nature 2007; 447 (7143): 477-481. doi:10.1038/nature05767.
Gooley JJ. Circadian regulation of lipid metabolism.Proc Nutr Soc 2016; 75 (4): 440-450. doi: 10.1017/S0029665116000288.
Sookoian S, Gemma C, Fernández Gianotti T, BurgueñoA, Alvarez A, González CD, Pirola CJ. Effects of rotatingshift work on biomarkers of metabolic syndrome andinflammation. J Intern Med 2007; 261 (3): 285-292. doi:10.1111/j.1365-2796.2007.01766.x.
Mohd Azmi NAS, Juliana N, Mohd Fahmi Teng NI, AzmaniS, Das S, Effendy N. Consequences of circadian disruptionin shift workers on chrononutrition and their psychosocialwell-being. Int J Environ Res Public Health 2020; 17 (6):2043. doi: 10.3390/ijerph17062043.
Shostak A, Meyer-Kovac J, Oster H. Circadian regulation oflipid mobilization in white adipose tissues. Diabetes 2013;62 (7): 2195-2203. doi: 10.2337/db12-1449.
Cheung IN, Zee PC, Shalman D, Malkani RG, Kang J, ReidKJ. Morning and evening blue-enriched light exposurealters metabolic function in normal weight adults. PLoSOne 2016; 11 (5): e0155601. doi: 10.1371/journal.pone.0155601.
Claustrat B, Brun J, Chazot G. The basic physiology andpathophysiology of melatonin. Sleep Med Rev 2005; 9 (1):11-24. doi: 10.1016/j.smrv.2004.08.001.
Ramracheya RD, Muller DS, Squires PE, Brereton H, SugdenD, Huang GC, Amiel SA, Jones PM, Persaud SJ. Function andexpression of melatonin receptors on human pancreaticislets. J Pineal Res 2008; 44 (3): 273-9. doi: 10.1111/j.1600-079X.2007.00523.x.
Buxton OM, Cain SW, O’Connor SP, Porter JH, Duffy JF, WangW, Czeisler CA, Shea SA. Adverse metabolic consequencesin humans of prolonged sleep restriction combined withcircadian disruption. Sci Transl Med 2012; 4 (129): 129ra43.doi: 10.1126/scitranslmed.3003200.
Woon PY, Kaisaki PJ, Bragança J, Bihoreau MT, Levy JC,Farrall M, Gauguier D. Aryl hydrocarbon receptor nucleartranslocator-like (BMAL1) is associated with susceptibilityto hypertension and type 2 diabetes. Proc Natl AcadSci USA 2007; 104 (36): 14412-14417. doi: 10.1073/pnas.0703247104.
Sookoian S, Gemma C, Gianotti TF, Burgueño A, CastañoG, Pirola CJ. Genetic variants of Clock transcription factorare associated with individual susceptibility to obesity.Am J Clin Nutr 2008; 87 (6): 1606-1615. doi: 10.1093/ajcn/87.6.1606.
Dupuis J, et al. New genetic loci implicated in fastingglucose homeostasis and their impact on type 2 diabetesrisk. Nat Genet 2010; 42 (2): 105-116. doi: 10.1038/ng.520.
Oosterman JE, Wopereis S, Kalsbeek A. The circadianclock, shift work, and tissue-specific insulin resistance.Endocrinology 2020; 161 (12): bqaa180. doi: 10.1210/endocr/bqaa180.
Wefers J, van Moorsel D, Hansen J, Connell NJ, HavekesB, Hoeks J, et al. Circadian misalignment induces fattyacid metabolism gene profiles and compromises insulinsensitivity in human skeletal muscle. Proceed Nat Acad SciUSA 2018; 115 (30): 7789-7794. https://doi.org/10.1073/pnas.1722295115.
Barclay JL, Husse J, Bode B, Naujokat N, Meyer-Kovac J,Schmid SM, Lehnert H, Oster H. Circadian desynchronypromotes metabolic disruption in a mouse model ofshiftwork. PLoS One 2012; 7 (5): e37150. doi: 10.1371/journal.pone.0037150.
Shamah-Levy T, Vielma-Orozco E, Heredia-Hernández O,Romero-Martínez M, Mojica-Cuevas J, Cuevas-Nasu L,Santaella-Castell JA, Rivera-Dommarco J. Encuesta Nacionalde Salud y Nutrición 2018-19: Resultados Nacionales. Cuernavaca,México: Instituto Nacional de Salud Pública, 2020.
Janeckova R. The role of leptin in human physiology andpathophysiology. Physiol Res 2001; 50 (5): 443-59.
Mullington JM, Chan JL, Van Dongen HP, Szuba MP, SamarasJ, Price NJ, Meier-Ewert HK, Dinges DF, Mantzoros CS.Sleep loss reduces diurnal rhythm amplitude of leptin inhealthy men. J Neuroendocrinol 2003; 15 (9): 851-854. doi:10.1046/j.1365-2826.2003.01069.x.
Maury E. Off the clock: From circadian disruption tometabolic disease. Int J Mol Sci 2019; 20 (7): 1597. doi:10.3390/ijms20071597.
Calvani M, Scarfone A, Granato L, Mora EV, Nanni G, CastagnetoM, Greco AV, Manco M, Mingrone G. Restorationof adiponectin pulsatility in severely obese subjects afterweight loss. Diabetes 2004; 53 (4): 939-947. doi: 10.2337/diabetes.53.4.939.
Yildiz BO, Suchard MA, Wong ML, McCann SM, LicinioJ. Alterations in the dynamics of circulating ghrelin, adiponectin,and leptin in human obesity. Proc Natl AcadSci USA 2004; 101 (28): 10434-10439. doi: 10.1073/pnas.0403465101.
Palomer X, Pérez A, Blanco-Vaca F. Adiponectin: a new linkbetween obesity, insulin resistance and cardiovasculardisease. Med Clin (Barc) 2005; 124 (10): 388-395. doi:10.1157/13072576.
Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, TakamuraT, et al. Rhythmic messenger ribonucleic acid expressionof clock genes and adipocytokines in mouse visceraladipose tissue. Endocrinology 2005; 146 (12): 5631-5636.doi: 10.1210/en.2005-0771.
Karlsson BH, Knutsson AK, Lindahl BO, Alfredsson LS.Metabolic disturbances in male workers with rotatingthree-shift work. Results of the WOLF study. Int Arch OccupEnviron Health 2003; 76 (6): 424-430. doi: 10.1007/s00420-003-0440-y.
Vorona RD, Winn MP, Babineau TW, Eng BP, Feldman HR,Ware JC. Overweight and obese patients in a primary carepopulation report less sleep than patients with a normalbody mass index. Arch Intern Med 2005; 165 (1): 25-30.doi: 10.1001/archinte.165.1.25.
Longo VD, Panda S. Fasting, Circadian rhythms, and timerestrictedfeeding in healthy lifespan. Cell Metab 2016; 23(6): 1048-1059. doi: 10.1016/j.cmet.2016.06.001.
Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, BushongEA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA,Ellisman MH, Panda S. Time-restricted feeding withoutreducing caloric intake prevents metabolic diseases in micefed a high-fat diet. Cell Metab 2012; 15 (6): 848-60. doi:10.1016/j.cmet.2012.04.019.
Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feedingis a preventive and therapeutic intervention againstdiverse nutritional challenges. Cell Metab 2014; 20 (6):991-1005. doi: 10.1016/j.cmet.2014.11.001.
Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B,Evans G, Cuzick J, Jebb SA, Martin B, Cutler RG, Son TG,Maudsley S, Carlson OD, Egan JM, Flyvbjerg A, Howell A.The effects of intermittent or continuous energy restrictionon weight loss and metabolic disease risk markers: arandomized trial in young overweight women. Int J Obes(Lond) 2011; 35 (5): 714-727. doi: 10.1038/ijo.2010.171.
Johnson JB, Summer W, Cutler RG, Martin B, Hyun DH,Dixit VD, Pearson M, Nassar M, Telljohann R, MaudsleyS, Carlson O, John S, Laub DR, Mattson MP. Alternate daycalorie restriction improves clinical findings and reducesmarkers of oxidative stress and inflammation in overweightadults with moderate asthma. Free Radic Biol Med 2007; 42(5): 665-674. doi: 10.1016/j.freeradbiomed.2006.12.005.
Barnosky AR, Hoddy KK, Unterman TG, Varady KA. Intermittentfasting vs daily calorie restriction for type 2 diabetesprevention: a review of human findings. Transl Res 2014;164 (4): 302-311. doi: 10.1016/j.trsl.2014.05.013.
Nelson DL, Cox MM. Lehninger: Principios de Bioquímica.4ª ed. Omega, 2009.
Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energyhomeostasis and drug targets. Annu Rev PharmacolToxicol 2012; 52: 381-400. doi: 10.1146/annurev-pharmtox-010611-134537.
Zheng X, Sehgal A. AKT and TOR signaling set the pace ofthe circadian pacemaker. Curr Biol 2010; 20 (13): 1203-8.doi: 10.1016/j.cub.2010.05.027.
Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, AlvarezJG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ,Thompson CB, Evans RM. AMPK regulates the circadianclock by cryptochrome phosphorylation and degradation.Science 2009; 326 (5951): 437-440. doi: 10.1126/science.1172156.
Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, ParameswaraV, Li Y, Goetz R, Mohammadi M, Esser V, ElmquistJK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ,Kliewer SA. Endocrine regulation of the fasting responseby PPARalpha-mediated induction of fibroblast growthfactor 21. Cell Metab 2007; 5 (6): 415-425. doi: 10.1016/j.cmet.2007.05.003.
Froy O, Miskin R. Effect of feeding regimens on circadianrhythms: implications for aging and longevity. Aging (AlbanyNY) 2010; 2 (1): 7-27. doi: 10.18632/aging.100116.
de Cabo R, Mattson MP. Effects of Intermittent Fasting onHealth, Aging, and Disease. N Engl J Med 2019; 381 (26):2541-2551. doi: 10.1056/NEJMra1905136.
Jamshed H, Beyl RA, Della Manna DL, Yang ES, Ravussin E,Peterson CM. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadianclock, aging, and autophagy in humans. Nutrients 2019;11 (6): 1234. doi: 10.3390/nu11061234.
Longo VD, Mattson MP. Fasting: molecular mechanisms andclinical applications. Cell Metab 2014; 19 (2): 181-192. doi:10.1016/j.cmet.2013.12.008.
Speakman JR, Mitchell SE. Caloric restriction. MolAspects Med 2011; 32 (3): 159-221. doi: 10.1016/j.mam.2011.07.001.
Mattson MP, Arumugam TV. Hallmarks of brain aging:Adaptive and pathological modification by metabolic states.Cell Metab 2018; 27 (6): 1176-1199. doi: 10.1016/j.cmet.2018.05.011.
Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF, BattagliaG, et al. Effects of eight weeks of time-restricted feeding(16/8) on basal metabolism, maximal strength, body composition,inflammation, and cardiovascular risk factors inresistance-trained males. J Transl Med 2016; 14 (1): 290.
Anton SD, Moehl K, Donahoo WT, Marosi K, Lee SA, MainousAG 3rd, Leeuwenburgh C, Mattson MP. Flipping themetabolic switch: Understanding and applying the healthbenefits of fasting. Obesity (Silver Spring) 2018; 26 (2):254-268. doi: 10.1002/oby.22065.