2021, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
Panorama general de las adaptaciones metabólicas en el Orden Anura
Ruiz-Londoño D, Manrique-Barros S, Triana VLE
Idioma: Español
Referencias bibliográficas: 92
Paginas:
Archivo PDF: 273.25 Kb.
RESUMEN
En esta revisión se exponen de forma general las características del metabolismo del orden Anura (Fischer von Waldheim,
1813), reportadas desde mediados del siglo XX hasta la actualidad. Los Anura son calificados como organismos exitosos
por poseer una amplia gama de mecanismos de adaptación a diferentes situaciones de estrés, posibles causas de la alta
diversidad en este grupo. Se mencionan algunas adaptaciones en el proceso de asimilación de los carbohidratos con
sus respectivos componentes fisiológicos, destacando la importancia de los corticosteroides en la activación de varias
rutas metabólicas y la regulación de estos a través de factores como la temperatura y la estación anual. Se describen las
principales funciones de los lípidos, las particularidades de las membranas y estrategias para eludir el estrés oxidativo, así
como las adaptaciones del metabolismo de los compuestos nitrogenados y el almacenamiento de diversos alcaloides, la
urea y su importancia en la osmorregulación posterior a la metamorfosis. Finalmente, se plantean perspectivas respecto
a futuras investigaciones sobre la bioquímica de estos organismos.
REFERENCIAS (EN ESTE ARTÍCULO)
Akiyoshi, H. & Inoue, A. M. (2012). Comparative histological study of hepatic architecture in the three orders of amphibian livers. Comparative Hepatology, 11(1), 2–9. https://doi. org/10.1186/1476-5926-11-2
Amaya, E., Offield, M. F. & Grainger, R. M. (1998). Frog genetics: Xenopus tropicalis jumps into the future. Trends in Genetics, 14(7), 253-255. https://doi.org/10.1016/S0168- 9525(98)01506-6
Antoniazzi, C. E., López, J. A., Duré, M. & Falico, D. A. (2013). Alimentación de dos especies de anfibios (Anura: Hylidae) en la estación de bajas temperaturas y su relación con la acumulación de energía en Santa Fe, Argentina. Revista de Biología Tropical, 61(2), 875-886.
Assis, V. R., Gardner, S. T., Smith, K. M., Gomes, F. R. & Mendonça, M. (2020). T. Stress and immunity: Field comparisons among populations of invasive cane toads in Florida. JEZ-A Ecological and Integrative Physiology, 163, 265–271. https://doi.org/10.1002/jez.2389
Balinsky, J. (1981). Adaptation of nitrogen metabolism to hyperosmotic environment in Amphibia. J. Exp. Zool. 215(3), 335-350. https://doi.org/10.1002/jez.1402150311
Balinsky, J. B., Dicker, S. E & Elliott, A. B. (1972). The effect of long-term adaptation to different levels of salinity on urea synthesis and tissue amino acid concentrations in Ra cancrivora. Comp. Biochem. Physiol, 43E, 71-82 .
Balls, M., Clothier, R. H. , Rowles J. M., Kiteley, N. A. & Bennett, G. W. (1985). TRH distribution, levels, and significance during the development of Xenopus laevis. In Metamorphosis (eds. Balls, M. & Bownes, M.) 260-272 (Clarendon Press, Oxford).
Baxter, C. F. & Ortiz, C. L. (1966). Amino acids and the maintenance of osmotic equilibrium in brain tissue. Life Sci., 5, 2321-2329 https://doi.org/10.1016/0024- 3205(66)90069-5
Bevier, C. (1997). Utilization of energy substrates during calling activity in tropical frogs. Behav. Ecol. Sociobiol., 41, 343–352. https://doi.org/10.1007/s002650050394
Bold, H. C & Wynne, M. J. (1985). Introduction to the Algae: Structure and Reproduction. (Prentice-Hall, Michigan).
Boto, L. (2010). Horizontal gene transfer in evolution: facts and challenges. Proceedings of the Royal Society B: Biological Sciences, 277, 819-827. https://doi.org/10.1098/ rspb.2009.1679
Brown, G. P., Shilton, C., Phillips, B. L. & Shine, R. (2007). Invasion, stress, and spinal arthritis in cane toads. PNAS, 104, 17698–17700. https://doi.org/10.1073/pnas.0705057104 Carvalho, J., Gomes, F. & Navas. (2008). Energy substrate utilization during nightly vocal activity in three species of Scinax (Anura/Hylidae). Journal of Comparative Physiology B, 178(4), 447-456 https://doi.org/10.1007/ s00360-007-0236-6
Cea-Calvo, L., Moreno, B., Monereo, S., Gil-Guillén, V., Lozano, J. V., Martí-Canales, J. C., Llisterri, J. L., Aznar, J., Gonzáles-Esteban, J. & Redón, J. (2008). Prevalencia de sobrepeso y obesidad en población española de 60 años o más y factores relacionados. Estudio PREV-ICTUS. Medicina Clínica, 131(6),205-210. https://doi.org/10.1157/13124609
Ceballos, N. R. (1999). Biosíntesis de aldosterona y su regulación en Bufo arenarum (Amphibia, Anura) (Doctoral dissertation, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales).
Ceballos, N. R. & Lantos, C. P. (1992). Corticoidogenesis in Bufo arenarum H. ln vitro biosynthesis of pregnenolone and corticosterone metabolites at low temperature incubations. Gen. Comp. Endocrinol., 88, 132-139 https:// doi.org/10.1042/bj2920143
Ceballos, N. R., Cozza, E. N. & Lantos, C. P. (1983). Corticoidogenesis in B. arenarum H. l. In vitro biosynthesis of 3H-pregnenolone and 3H-corticosterone metabolites and of endogenous 3-oxo-4-ene intennediates at 28 C and 37 C. Gen. Comp. Endocrinol., 51, 138-147
Chong, R. A. & Mueller, R. L. (2013). Low metabolic rates in salamanders are correlated with weak selective constraints on mitochondrial genes. Evolution: International Journal of Organic Evolution, 67(3), 894-899. https://doi.org/10.1111/ j.1558-5646.2012.01830.x
Citadini, J. M., Brandt, R., Williams, C. R. & Gomes, F. R. (2018). Evolution of morphology and locomotor performance in anurans: relationships with microhabitat diversification. J. Evol. Biol., 31, 371–381. https://doi.org/10.1111/jeb.13228
Cocroft, R. B. & Ryan, M. J. (1995). Patterns of advertisement call evolution in toads and chorus frogs. Animal Behaviour, 49(2), 283-303 https://doi.org/10.1006/anbe.1995.0043
Colley, L., W. C. Rowe, A. K. Huggins, A. B. Elliott, & S. E. (1972).Dicker The effect of short-term changes in the external salinity on the levels of the non-protein nitrogen- ous compounds and the ornithine urea cycle enzymes in Rana cancrivora. Comp. Biochem. Physiol., 41B, 307-322.
Coppo, J. A., Mussart, N. B., Fioranelli, S. A., Barboza, N. N. & Koza, G. A. (2005).Variaciones fisiológicas atribuibles al crecimiento, alimentación y temperatura ambiental en sangre de Rana catesbeiana (Shaw, 1802). Revista Veterinaria, 16(2), 74-83.
Cossins, A. R. & Prosser, C. L. (1978). Evolutionary adaptation of membranes to temperature. PNAS, 75, 2040-2043 https:// doi.org/10.1073/pnas.75.4.2040
Costa, J. (2004). Reacción en cadena de la polimerasa (PCR) a tiempo real. Enfermedades infecciosas y microbiología clínica, 22(5), 299-305.
Costanzo J. P., Wright, M. F. & Lee, R. E. (1992). Freeze tolerance as an overwintering adaptation in Cope’s grey treefrog (Hylachrysoscelis). Copeia, 1992(2), 565–569. https://doi.org/10.2307/1446222
Costanzo, J. P., Lee, R. E. & Wright, M. F. (1991). Effect of cooling rate on the survival of frozen wood frogs, Rana sylvatica. J. Comp. Physiol. B, 161(3), 225-229. https:// doi.org/10.1007/BF00262302
Daily J. W., Spande T. F. & Garraffo, H. M. (2005). Alkaloids from Amphibian Skin: A Tabulation of Over Eight Hundred Compounds. Journal of Natural Products, 68(10), 1556- 1575 https://doi.org/10.1021/np0580560
Daily J. W, Myers C. W. & Whittaker, N. (1987). Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon, 25(10), 1023-95 https:// doi.org/10.1016/0041-0101(87)90265-0
Dapper, A. L., Baugh, A. T. & Ryan, M. J. (2011).The sounds of silence as an alarm cue in túngara frogs, Physalaemus pustulosus. Biotropica, 43(3), 380-385 https://doi. org/10.1111/j.1744-7429.2010.00707.x
Darst, C. R., Menéndez Guerrero, P. A., Coloma, L. A. & Cannatella, D. C. (2005). Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): a comparative analysis. The American Naturalist, 165(1), 56-69 https://doi.org/10.1086/426599
Denver, R. J. (2009). Structural and functional evolution of vertebrate neuroendocrine. Ann. N. Y. Acad. Sci., 1163, 1-16.
Dickhoff, W. W. (1993). Hormones, metamorphosis, and smolting In The endocrinology of growth, development, and metabolism in vertebrates (eds. Schreibman, M. P., Scanes, C. G., Pang, P. K. T.) 519-540. (Academic Press, New York).
Dinsmore, S. C. & Swanson, D. L. (2008). Temporal patterns of tissue glycogen, glucose, and glycogen phosphorylase activity prior to hibernation in freeze-tolerant chorus frogs, Pseudacristriseriata. Can. J. Zool., 86, 1095–1100. https:// doi.org/10.1139/Z08-088
Eckert, R., Randall, D. & Augustine, G. (1992). Fisiología Animal (Interamericana, Madrid).
Federico, L. (2011). La cloricia en anuros, análisis histórico de un carácter sistemático. Scientiae Studia, 9(4), 777-789 https://doi.org/10.1590/S1678-31662011000400003
Fernández, A. H. & Camargo, C. D. B. (2011). El lenguaje y el genoma humano: nociones básicas para los especialistas en fonoaudiología. Revista Internacional de Investigación en Ciencias Sociales, 7(2), 161.
Fischer von Waldheim, G. F. (1813). Zoognosia tabulis synopticis illustrata: in usum praelectionum Academiae imperialis médico-chirugicae mosquensis edita. Typis Nicolai S. Vsevolozsky
Flores Soto, M. E. & Segura Torres, J. E. (2005). Estructura y función de los receptores acetilcolina de tipo muscarínico y nicotínico. Rev. Mex. Neuroci., 6(4), 315-326.
Frost, D. R. (2021). Amphibian Species of the World: an Online Reference. Version 6.1 (accessed 6 February 2021). Electronic Database accessible at https:// amphibiansoftheworld.amnh.org/index.php. American Museum of Natural History, New York, USA. https://doi. org/10.5531/db.vz.0001
Gerhardt, H. C. (1994). The evolution of vocalization in frogs and toads. Annual Review in Ecology and Systematics, 25, 293- 324. https://doi.org/10.1146/annurev.es.25.110194.001453
Glazier, D. S. (2005). Más allá de la «ley de 3/4 potencias»: variación en la escala intra e interespecífica de la tasa metabólica en animales. Revisiones Biológicas, 80(4), 611-662.
Gómez Fernández, D., Castaño, S., Fierro, L., Armbrecht, I. & Asencio-Santofimio, H. (2013). Análisis Trófico De Andinobates Minutus (Anura: Dendrobatidae) En Un Bosque Húmedo Tropical De La Isla La Palma, Colombia: Diet of Andinobates minutus (Anura: Dendrobatidae) in a tropical rainforest from La Palma island, Colombia. Caldasia,35(2), 325-332
Gordon, M. S. (1965). Intracellular osmoregulation in skeletal muscle during salinity adaptation in two species of toads. The Biological Bulletin, 128(2), 18-229 https://doi. org/10.2307/1539551
Grafe, U. (1997). Use of metabolic substrates in the gray treefrog Hyla versicolor: Implications for calling behavior. Cop., 1997, 356–362.
Grundy, J. E. & Storey, K. B. (1994). Urea and salt effects on enzymes from estivating and non-estivating amphibians. Molecular and Cellular Biochemistry, 131(1), 9-17. https:// doi.org/10.1007/BF01075719
Gutiérrez, K., Morales, R. & Pino, J.(2018). Ranas dardo venenosas (Dendrobatidae) y su importancia en la bioprospección de moléculas bioactivas en los últimos tiempos: una revisión. Revista de Iniciación Científica, 4, 43-47 https://doi.org/10.33412/rev-ric.v4.0.1818
Handler, J., Petersen, M. & Orloff, J. (1966). Effect of metabolic inhibitors on the response of the toad bladder to vasopressin. American Journal of Physiology-Legacy Content, 211(5), 1175-1180. https://doi.org/10.1152/ ajplegacy.1966.211.5.1175
Hanke, W. & Neumann, U. (1972). Carbohydrate metabolism in Amphibia. General And Comparative Endocrinology, 3, 198-208. https://doi.org/10.1016/0016-6480(72)90149-9
Hart, J. S. (1957). Climatic and temperature induced changes in the energetics of homeotherms. Rev. Can. Biol., 16, 166-174.
Heyer, W. R., García-López, J. M. & Cardoso, A. J. (1996). Advertisement call variation in the Leptodactylus mystaceus species complex (Amphibia: Leptodactylidae) with a description of a new sibling species. Amphibia-Reptilia, 17(1), 7-31
Jolivet-Jaudet, G. & Leloup-Hatey, J. (1984). Variations in aldosterone and corticosterone plasma levels during metamorphosis in Xenopus laevis tadpoles. Gen. Comp. Endocrinol., 56, 59-65. https://doi.org/10.1016/0016- 6480(84)90061-3
Kasai, R., Kitajima, Y., Martin, C. E., Nozawa, Y., Skn’ver, L. & Thompson Jr., G. A. (1976). Molecular control of membrane properties dung temperature acclimation. Membrane fluidity regulation of fatty acid desaturase action. Biochemistry, 15, 5228-5233 https://doi.org/10.1021/bi00669a005
Kikuyama, S., Suzuki, M. R. & Iwamuro, S. (1986). Elevation of plasma aldosterone levels of tadpoles at metamorphic climax. Gen. Comp. Endocrinol., 63, 186-190. https://doi. org/10.1016/0016-6480(86)90155-3
King, J. A. & Milla, R. P. (1981). TRH, GH-RIH, and LH-RH in metamorphosing Xenopus laevis. Gen. Comp. Endocrinol., 44, 20-27. https://doi.org/10.1016/0016-6480(81)90351-8
Krane, C. M. & Goldstein, D. L. (2007). Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans. Mamm. Genome, 18(6), 452-462. DOI: 10.1007/ s00335-007-9041-5
Kupferberg, S. J. (1997). The role of larval diet in anuran metamorphosis. American Zoologist, 37(2), 146-159. https://doi.org/10.1093/icb/37.2.146
Labra, F. A., Marquet, P. A. & Bozinovic, F. (2007). Scaling metabolic rate fluctuations. PNAS, 104(26), 10900-10903. https://doi.org/10.1073/pnas.0704108104
Layne, J. R., Jr. & Lee, R. E., Jr. (1987). Freeze tolerance and the dynamics of ice formation in wood frogs (Rana sylvatica) from southern Ohio. Can. J. Zool., 65(8), 2062–2065. https://doi.org/10.1139/z87-315
Lighton, J. R. (2008). Measuring metabolic rates: a manual for scientists. (Oxford, Oxford University Press.
Llewellyn, D., Thompson, M. B., Brown, G. P., Phillips, B. L. & Shine, R. (2012). Reduced investment in immune function in invasion-front populations of the cane toad (Rhinella marina) in Australia. Biological Invasions, 14, 999–1008. https://doi.org/10.1007/s10530-011-0135-3
López, J. A., Scarabotti, P. A. & Ghirardi, R. (2011). Seasonal patterns of abundance and recruitment in an amphibian assemblage from the Paraná River floodplain. Interciencia, 36, 538-544.
Ma, T., Yang, B. & Verkman, A. S. (1996). cDNA cloning of a functional water channel from toad urinary bladder epithelium. Am. J. Physiol., 271(5), C1699-C1704. DOI: 10.1152/ajpcell.1996.271.5.C1699
MacDonald, J. A., Degenhardt, T., Baynes, J. W. & Storey, K. B. (2009). Glycation of wood frog (Rana sylvatica) hemoglobin and blood proteins: in vivo and in vitro studies. Cryobiology, 59(2), 223-225.
Martínez Augustin, O. & Martínez de Victoria, E. (2006). Proteínas y péptidos en nutrición enteral. Nutrición Hospitalaria, 21, 01-14
McKee, T. & McKee, J. R. ( 2014). Bioquímica: las bases moleculares de la vida (McGrawHill, Philadelphia).
McNabb, R. A. (1969). The effects of thyroxine on nitrogen metabolism in the leopard frog, Rana pipiens. General and Comparative Endocrinology, 13(3), 430-438 . https://doi. org/10.1016/0016-6480(69)90266-4
Milner, A. R. (1990). The radiations of temnospondyl amphibians. In Major Evolutionary Radiations (eds. Taylor, P. D. & Larwood, G. P.) 321-349. (Systematics Association, Oxford, 1990).
Nespolo, R. F., Figueroa, J. & Solano-Iguaran, J. J. (2017). Studying the evolutionary significance of thermal adaptation in ectotherms: The diversification of amphibians’ energetics. Journal of Thermal Biology, 68, Part A, 5-13. https://doi. org/10.1016/j.jtherbio.2016.11.014
Piezzi, R. S. & Burgos, M. H. (1968). The toad adrenal gland. l. Cortical cells dun’ng summer and winter. Gen. Comp. Endocrinol., 10, 344-354 https://doi.org/10.1016/0016- 6480(68)90044-0
Pough, F. H. (1980). The advantages of ectothermy for tetrapods. The American Naturalist,, 115(1), 92-112. https://doi. org/10.1086/283547
Prado, C. & Haddad, C. F. (2005). Size-fecundity relationships and reproductive investment in female frogs in the Pantanal, South-Western Brazil. The Herpetological Journal, 15(3), 181-189.
Proaño, C. Y. & Rivera, M. (2005). La piel de las ranas: Un verdadero arsenal químico, Nuestra Ciencia, 8, 35-38
Rincón Franco, F. & Castro-H. F. (1998). Aspectos ecológicos de una comunidad de Eleutherodactylus (Anura: Leptodactylidae) en un bosque de niebla del Occidente de Colombia. Caldasia, 193-202.
Rodríguez, C., Bustos, D. & Sanabria, E. (2019). Adaptation of the Andean Toad Rhinella spinulosa (Anura: Bufonidae) at Low Temperatures: The Role of Glucose as Cryoprotectant. Physiological And Biochemical Zoology, 92(5), 473-480. https://doi.org/10.1086/705122
Rollins-Smith, L. A. (2017). Amphibian immunity–stress, disease, and climate change. DCI, 66, 111-119. https://doi. org/10.1016/j.dci.2016.07.002
Ruibal, R. (1962).The Adaptive Value of Bladder Water in the Toad, Bufo cognatus. Physiol. Biochem. Zool., 35(3), 218–223. DOI:10.1086/physzool.35.3.30152806
Sawant, V. A. & Varute, A. T. (1973). Lipid changes in the tadpoles of Rana tigrina during growth and metamorphosis. Comp. Biochem. Physiol., 44B, 729-750 https://doi. org/10.1016/0305-0491(73)90223-X
Sheridan, M. A. (1994). Regulation of lipid metabolism in poikilothermic vertebrates. Comp. Biochem. Physiol. B, 107(4), 495-508. https://doi.org/10.1016/0305- 0491(94)90176-7
Sheridan, M. A. & Kao, Y. H. (1998). Regulation of metamorphosis-associated changes in the lipid metabolism of selected vertebrates. American Zoologist, 38(2), 350- 368 https://doi.org/10.1093/icb/38.2.350
Sinensky, M. (1974) Homeoviscous adaptation - a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. PNAS, 71, 522-525 . https://doi. org/10.1073/pnas.71.2.522
Steiner, A. A., Petenusci, S. O., Brentegani, L. G. & Branco, L. G. S. (2000). The importance of glucose for the freezing tolerance/intolerance of the anuran amphibians Rana catesbeiana and Bufo paracnemis. Revista Brasileira de Biologia, 60(2), 321-328. https://doi.org/10.1590/S0034- 71082000000200017.
Suzuki, M., Hasegawa, T., Ogushi, Y. & Tanaka, S. (2007). Amphibian aquaporins and adaptation to terrestrial environments: a review. CBPA, 148(1), 72-81. DOI: 10.1016/j.cbpa.2006.12.021
Tata, J. R. (1999). Amphibian metamorphosis as a model for studying the developmental actions of thyroid hormone. Biochimie, 81(4), 359-366 https://doi.org/10.1038/cr.1998.26
Timpone, L., Gavira, R. & Andrade, D. (2019). Effects of temperature and meal size on the postprandial metabolic response of Leptodactylus latrans (Anura, Leptodactylidae). Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 333(2), 79-87. https://doi. org/10.1002/jez.2326
Urbani, E. (1962). Comparative biochemical studies on amphibian and invertebrate development. In Advances in morphogenesis (eds. Ambercombie, M. & Brachet, J.) 61-108 (Academic Press, New York).
Vargas, F. & Castro, F. (1999). Distribución y preferencias de microhábitat en anuros (Amphibia) en bosque maduro y áreas perturbadas en Anchicayá, Pacífico colombiano. Caldasia, 21, 95-109.
Virkki, L.V., Franke, C., Somieski, P. & Boron, W. F.(2002). Cloning and functional characterization of a novel aquaporin from Xenopus laevis oocytes. J. Biol. Chem., 277, 40610– 40616. https://doi.org/10.1074/jbc.M206157200
Wake, D. B. (1991). Homoplasy: the result of natural selection, or evidence of design limitations? The American Naturalist, 138(3), 543-567. https://doi.org/10.1086/285234
Weber, G. M., Farrar, E. S., Tom, C. K. F. & Grau, E. G. (1994). Changes in whole-body thyroxine and triiodothyronine concentrations and total content during early development and metamorphosis of the toad Bufo marinus. Gen. Comp. Endocrinol., 94, 62-71 . https://doi.org/10.1006/ gcen.1997.6922
Wells, K. D. & Schwartz, J. J. (2007). The behavioral ecology of anuran communication. In Hearing and sound communication in amphibians (eds. Narins, P. M., Feng, A. S. & Fay, R. R.). 44-86 (Springer, New York, NY.). https:// doi.org/10.1007/978-0-387-47796-1_3
Wilson, J. A. (1989). Fundamentos de Fisiología Animal (Limusa, México).
Zalduegui, P. C. (1976). Metabolismo de aminoácidos (Biblioteca ETSI Agrónomos, Madrid).
Zimmerman, S. L., Frisbie, J., Goldstein, D. L., West, J., Rivera, K. & Krane, C. M. (2007). Excretion and conservation of glycerol, and expression of aquaporins and glyceroporins, during cold acclimation in Cope’s gray tree frog Hyla chrysoscelis. Am. J. Physiol. Regul. Integr. Comp. Physiol,. 292(1), R544-R555. DOI: 10.1152/ajpregu.00434.2006.