2021, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
Efecto de la fotolisis y pH en la degradación de la oxitetraciclina en sedimento y agua marina
Sotelo-Cornejo KG, Espinosa-Plascencia A, Gámez-Bayardo S, Pérez-Álvarez A, Jiménez-Edeza M, García-Galaz A, Bermúdez-Almada MC
Idioma: Español
Referencias bibliográficas: 45
Paginas:
Archivo PDF: 406.33 Kb.
RESUMEN
La oxitetraciclina (OTC) es un antibiótico frecuentemente utilizado en el control de enfermedades provocadas por
Vibrio
en granjas de cultivo de camarón
Penaeus vannamei. Se evaluó la degradación de la OTC en muestras de sedimento
y agua marina (2:98 p/v), con OTC como estándar y OTC adicionada en alimento para camarón, en ambos casos a 10
µgmL
-1. Los ensayos tuvieron una duración de 40 días, y se evaluaron factores abióticos como exposición a la luz y
efecto del pH (7 y 8). Las muestras con estándar de OTC expuestas a la luz, tuvieron una degradación del antibiótico
del 100% para ambos valores de pH; en las muestras no expuestas, la degradación fue de 88.33% a pH 7 y 90.90% a pH
8. En las muestras con OTC en alimento para camarón, la degradación fue del 100% a los 40 días, con y sin exposición
a la luz y con los dos valores de pH. El tiempo de vida media de degradación de la OTC en el alimento, fue menor con
respecto a las muestras adicionadas con estándar con y sin exposición a la luz (
P ≤ 0.05). Los residuos de la OTC se
degradan por efecto de la luz y pH, reduciendo su permanencia en los sedimentos acuícolas.
REFERENCIAS (EN ESTE ARTÍCULO)
Acevedo, R. L., Severiche, C. A. & Jaimes, J. C. (2015). Bacterias. . resistentes a antibióticos en medios acuáticos. Producción Limpia, 10(2), 160-172. http://www.scielo.org.co/pdf/pml/ v10n2/v10n2a15.pdf.
Andrade, C. A. (2018). Remoción de oxitetraciclina presente en soluciones acuosas usando cenizas de cáscara de arroz (Tesis de maestría). Instituto politécnico de Leiria, pág. 8-11, 108-118. Ecuador. https://core.ac.uk/download/ pdf/161394998.pdf.
Andreozzi, R., Raffaele,M. & Nicklas, P. (2003). Pharmaceutical in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50, 1319-1330. https://doi. org/10.1016/S0045-6535(02)00769-5.
Becerra, G., Plascencia, A., Luévanos, A., Domínguez, M. & Hernández, I. (2009). Mecanismo de resistencia a antimicrobianos en bacterias. En: Enfermedades Infecciosas y Microbiología. 29(2),70-76. https://www.medigraphic. com/pdfs/micro/ei-2009/ei092e.pdf.
Doi, A. & Stoskopf, M. (2000). The Kinetics of oxytetracycline degradation in deionized water under varying temperature, pH, light, substrate, and organic matter. Journal of Aquatic Animal Health, 12, 246-253. https://doi.org/10.1577/1548- 8667(2000)012<0246:TKOODI>2.0.CO;2.
Espinosa, P. A. & Bermúdez, A. M. C. 2012. La acuicultura y su impacto al medio ambiente. Estudios Sociales, 20(2), 221- 232. https://www.redalyc.org/articulo.oa?id=41724972010.
Food and Drug Administration (FAO) (2018). The state of world fisheries and aquaculture 2018-Meeting the sustainable development goals. http://www.fao.org/3/i9540en/i9540en. pdf.
FDA (2011). Tolerance for residues of new animal drugs in food. Electronic Code of Federal Regulation. Food and Drugs. Recuperado de: https://www.fda.gov/media/80297/ download
FDA. (2014). Tolerance for residues of new animal drugs in food. Electronic Code of Federal Regulation. Food and Drugs. Recuperado de: http://www.ecfr.gov/cgi.
Gómez-Gil, B., Roque, A. & Guerra, A. L. (2014). Enfermedades infecciosas más comunes en México y el impacto del uso de antimicrobianos. En Páez O. F. (Ed.) Camaronicultura y Medio Ambiente. (pp. 315-346). Universidad Nacional Autónoma de México. http://cesaibc.org/pdf/infointeres/ crustaceos/enfermedadesmexico.pdf.
González–Gaya, B., Cherta, L., Nozal, L. & Rico, A. (2018). An optimized simple treatment method for the determination of antibiotics in seawater, marine sediments and biological samples using LC-TOF/MS. Science Total Environment, 1(643), 994-1004. https://doi.org/10.1016/j. scitotenv.2018.06.079.
Halling-Sørensen, B., Sengeløv, G. & Tjørnelund, J. (2002). Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Archives of Environmental Contamination and Toxicology. 42(3), 263- 271. https://doi.org/10.1007/s00244-001-0017-2.
Hong-Thih, L. & Jing-Ju, L. (2009). Degradation of oxolinic acid and flumequine in aquaculture pond waters and sediments. Chemosphere, 75(4), 462-468. https://doi.org/10.1016/j. chemosphere.2008.12.060.
Institute T. N. V. (2016). Use of antibiotics in Norwegian aquaculture on behalf of Norwegian seafood council. The Norwegian Veterinary Institute. Oslo.
Harmonized Tripartite Guideline (ICH). (2005). Validation of analytical procedures: text and methology. ICH 2QR1. https://www.ema.europa.eu/en/ich-q2-r1-validationanalytical- procedures-text-methodology.
Jiao, S. J., Meng, D. Q., Yin, D. Q., Wang, L. H. & Chen, L. Y. (2008). Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process. Journal of Environmental Sciences. 20(7), 806-820. https://doi.org/10.1016/S1001- 0742(08)62130-0.
Kong, W., Li, C., Dolhi, J. M., Li, S., He, J. & Qiao, M. (2012). Characteristics of oxytetracycline sorption and potential bioavailability in soils with various physical-chemical properties. Chemosphere, 87(5), 542-548. https://doi. org/10.1016/j.chemosphere.2011.12.062.
Kulshrestha, P., Giese, R. F. & Aga, S. R. (2004). Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environmental Science of Technology, 38(15), 4097- 4105. https://doi.org/10.1021/es034856q.
Lai, H. & Lin, J. (2009). Degradation of oxolinic acid and flumequine in aquaculture pond waters and sediments. Chemosphere, 75(4), 462-468. https://doi.org/10.1016/j. chemosphere.2008.12.060.
Leal, J. F., Esteves, V. I. & Santos, E. B. (2016). Use of sunlight to degrade oxytetracycline in marine aquaculture’s waters. Environmental Pollution, 213, 932-939. https://doi. org/10.1016/j.envpol.2016.03.040.
Leal, J. F., Esteves, V. I. & Santos, E. B. H. (2019). Solar photodegradation of oxytetracycline in brackish aquaculture water: New insights about effects of Ca2+ and Mg 2+. Journal of photochemistry and photobiology A: Chemistry, 372(3), 218-225. https://doi.org/10.1016/j. jphotochem.2018.12.022.
Li, Z., Qi, W., Feng, Y., Liu, Y., Ebrahim, S. & Long, J. (2019). Degradation mechanisms of oxytetracycline in the environment. Journal of Integrative Agriculture, 18(9), 1953-1960. https://doi.org/10.1016/S2095- 3119(18)62121-5.
Li, E., Chen, C., Zeng, N., Yu, Z., Xiong, X. & Chen-Quin, J. G. (2008). Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocianin contents and hepatopancreas histology of White shrimp, Litopenaeus vannamei at various salinities. Aquaculture, 274(1), 80-86. https://doi.org/10.1016/j.aquaculture.2007.11.001.
Li, J. & Zhang, H. (2016). Adsorption-desorption of oxytetracycline on marine sediments: Kinetics and influencing factors. Chemosphere, 164, 156-163. https:// doi.org/10.1016/j.chemosphere.2016.08.100.
Liu, W., Pan, N., Chen, W., Jiao, W. & Wang, M. (2012). Effect of veterinary oxytetracycline on functional diversity of soil microbial community. Plant Soil Environent, 58(7), 295- 301. https://doi.org/10.17221/430/2011-PSE.
Liu, X., Zhang, H., Luo, Y., Zhu, R., Wang, H. & Huang, B. (2020). Sorption of oxytetracycline in particulate organic matter in soils and sediments: Roles of pH, ionic strength and temperature. Science of the Total Environment, 714, 136628. https://doi.org/10.1016/j.scitotenv.2020.136628
Nogueira-Lima, A., Gesteira, T. & Mafezoli, J. (2006). Oxytetracycline residues in cultivated marine shrimp (Litopenaeus vannamei Boone, 1931) (Crustacea, Decapoda) submitted to antibiotic treatment. Aquaculture, 254(1-4), 748–757. https://doi.org/10.1016/j. aquaculture.2005.11.021.
Oka, H., Ikai, Y., Kawamura, N., Yamada, M., Harada, K., Ito, S. & Suzuki, M. (1989). Photodecomposition products of tetracyclines in aqueous solution. Journal of Agricultural and Food Chemistry, 37(1), 226-231. https:// doi.org/10.1021/jf00085a052.
Oka, H., Matsumoto, H., Uno, K., Harada, K., Kadowaki, S. & Suzuki, M. (1985). Improvement of chemical analysis of antibiotics VIII. Application of prepacked C18 cartridge for the analysis of tetracycline residues in animal liver. Journal of Chromatography A, 325(1), 265-274. https:// doi.org/10.1016/S0021-9673(00)96027-8.
Pouliquen, H., Delépée, R., Larhantec-Verdier, M., Morvan, M. & Le, H. (2007). Comparative hydrolysis and photolysis of four antibacterial agents (oxytetracycline, oxolinic acid, flumequine and florfenicol) in deionized water, freshwater and seawater under abiotic conditions. Aquaculture, 262(1), 23-28. https://doi.org/10.1016/j.aquaculture.2006.10.014.
Pouliquen, H., LeBris, H. & Pinault, L. (1992). Experimental study of the therapeutic application of oxytetracycline, its attenuation in sediment and sea water and implications for farm culture of benthic organisms. Marine Ecology Progress Series, 89(1), 93–98. https://doi.org/10.3354/meps089093.
Prado, S., Romalde, J. L. & Barja, J. L. (2010). Review of probiotics for use in bivalve hatcheries. Veterinary Microbiology, 145(3-4), 187-197. https://doi.org/10.1016/j. vetmic.2010.08.021.
Pro, F. J. (2016). Valoración de efectos ecotoxicológicos de oxitetraciclina en organismos terrestres y acuáticos mediante el empleo de sistemas multi-especie en suelo (MS3). (Tesis maestría). Universidad Complutense de Madrid, España. (pp. 95-96). https://eprints.ucm.es/38767/.
Redrován, K. (2017). Medidas terapéuticas para el control de vibriosis en el cultivo de camarón blanco Litopenaeus vannamei (Tesis de maestría). Universidad Técnica de Machala, Ecuador. (pp.19-24). http://repositorio.utmachala. edu.ec/handle/48000/11355.
Rojas, D. (2010). Tolerancia a oxitetraciclina de comunidades microbianas de sedimentos en muestras provenientes de proyectos agropecuarios en el Distrito de Riego Arenal Tempisque. (Tesis de licenciatura). Universidad de Costa Rica. Costa Rica. (pp. 17-18). http://hdl.handle. net/10669/16837.
Samuelsen, O. B. (1989). Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm. Aquaculture, 83(1-2), 7-16. https://doi. org/10.1016/0044-8486(89)90056-2.
Samuelsen, O. B., Lunestad, B. T., Ervik, A. & Fjelde, S. (1994). Stability of antimicrobial agents in artificial marine sediment studied under laboratory conditions. Aquaculture, 126(3-4), 283-290. https://doi.org/10.1016/0044-8486(94)90044-2.
Seo, S., Keum, Y. S. & Li, Q. X. (2009). Bacterial degradation of aromatic compounds. International Journal of Environmental Research and Public Health, 6(1), 278-309. https://doi.org/10.3390/ijerph6010278.
Sosa, D., Medina, A. & Faure, R. (2013). Empleo de la oxitetraciclina en el cultivo del camarón con énfasis en la especie Litopenaeus vannamei y alternativas que favorecen la disminución o sustitución de su aplicación. Revista Electrónica de Veterinaria, 14(7), 1-11. https://www. redalyc.org/pdf/636/63628041010.pdf.
Soto-Rodríguez, S. A., Gómez-Gil, B., Roque, A. & Lozano, R. (2008). MIC’S de antibióticos de Vibrio spp aislados de L. vannamei cultivado en México. Panorama Acuícola Magazine. 14(1), 52-57. https://www.researchgate.net/ publication/284980299 MICs de antibioticos de Vibrio spp aislados del L. vannamei cultivado en México.
Tirado, D., Montero, P. & Acevedo, D. (2015). Estudio comparativo de métodos empleados para la determinación de humedad de varias matrices alimentarias. Información Tecnológica, 26(2), 3-10.
Topp, E., Joakim, L. D. G., Miller, D. N., Van den Eede, C. & Virta, M. P. J. (2018). Antimicrobial resistance and the environment: assessment of advances, gaps and recommendations for agriculture, aquaculture and pharmaceutical manufacturing. FEMS Microbiology Ecology, 94(3), 1-5. https://doi.org/10.1093/femsec/ fix185.
Van der Grinten, E., Pikkemaat, M. G., van den Brandhof, E. J., Stroomberg, G. J. & Kraak, M. H. (2010). Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere, 80(1), 1-6. https://doi.org/10.1016/j.chemosphere.2010.04.011.
Venkateswara-Rao, A. (2009). Vibriosis en la acuacultura del camarón. India. Recuperado de: https://aquahoy. com/archivo/156-uncategorised/7165-vibriosis-en-laacuicultura- del-camaron
Yan, W., Guo, Y., Xiao, Y., Wang, S., Ding, R., Jiang, J., Gang, H., Wang, H., Yang, J. & Zhao, F. (2018). The changes of bacterial communities and antibiotic resistance genes in microbial fuel cell during long-term oxytetracycline processing. Water Research, 142, 105-114. https://doi. org/10.1016/j.watres.2018.05.047.