2021, Número 4
<< Anterior Siguiente >>
Rev Educ Bioquimica 2021; 40 (4)
Maquinaria de citocinesis en plantas: origen y características
Monroy-Morales E, Dávila-Delgado R, Sánchez-López R
Idioma: Español
Referencias bibliográficas: 58
Paginas: 153-166
Archivo PDF: 869.84 Kb.
RESUMEN
La citocinesis es el proceso que concluye la división celular, y consiste en la distribución
del citoplasma y organelos de la célula madre en las dos células hijas. En plantas, la
citocinesis ocurre por la formación de una placa celular en el centro del fragmoplasto;
este último es una estructura formada por microtúbulos y microfilamentos de actina
que se alinea perpendicularmente al plano de la división y sirve como un andamio
para el ensamblaje de la placa celular. Vesículas citocinéticas derivadas del aparato
de Golgi migran al centro del plano de la división a través del fragmoplasto, donde
se fusionan para dar origen a la placa celular, la cual crece hacia la periferia de la
célula en división y, eventualmente, se fusiona con la membrana plasmática lateral
de la célula parental, completando así la división celular. La citocinesis mediada por
el fragmoplasto es un mecanismo específico de las células vegetales, aunque también
ha sido reportado en algas carofitas (Charales, Coleochaetales y Zygnematales), uno
de los grupos de parientes más cercanos a las actuales plantas terrestres. Sabemos
que algunas características celulares y moleculares de la maquinaria citocinética en
plantas terrestres tienen su origen en algas carofitas. En esta revisión discutimos:
1) características de la citocinesis somática en plantas, 2) componentes de la maquinaria
molecular involucrada en la formación de la placa celular, y 3) evidencia de
la citocinesis mediada por fragmoplasto en algas carofitas.
REFERENCIAS (EN ESTE ARTÍCULO)
Guertin DA, Trautmann S, McCollum D (2002) Cytokinesis in Eukaryotes. Microbiol Mol Biol Rev 66:155-178.
Verma DP (2001) Cytokinesis and building of the cell plate in plants. Annu Rev Plant Biol 52:751-784.
de Keijzer J, Mulder BM, Janson ME (2014) Microtubule networks for plant cell division. Syst Synth Biol 8:187-194.
Jürgens G (2005) Cytokinesis in higher plants. Annu Rev Plant Biol 56:281-299.
Van Damme D, Vanstraelen M, Geelen D (2007) Cortical division zone establishment in plant cells. Trends Plant Sci 12:458-464.
Smertenko A, Hewitt SL, Jacques CN, Kacprzyk R, Liu Y, Marcec MJ, Moyo L, Ogden A, Oung HM, Schmidt S, Serrano-Romero EA (2018) Phragmoplast microtubule dynamics-a game of zones. J Cell Sci 131:1-11.
Smertenko A (2018) Phragmoplast expansion: the four-stroke engine that powers plant cytokinesis. Curr Opin Plant Biol 46:130-137.
LaMontagne ED, Heese A (2017) Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity. Curr Opin Plant Biol 40:114- 121.
Nebenführ A, Frohlick JA, Staehelin LA (2000) Redistribution of Golgi stacks and other organelles during mitosis and cytokinesis in plant cells. Plant Physiol 124:135-151.
Seguí-Simarro JM, Austin JR, White EA, Staehelin LA (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16:836- 856.
Rosquete MR, Davis DJ, Drakakaki G (2018) The plant trans-golgi network: not just a matter of distinction. Plant Physiol 176:187- 198.
Nicolas WJ, Grison MS, Trépout S, Gaston A, Fouché M, Cordelières FP, Oparka K, Tilsner J, Brocard L, Bayer EM (2017) Architecture and permeability of post cytokinesis plasmodesmata lacking cytoplasmic sleeves. Nat Plants 3:1-11.
Park E, Díaz-Moreno SM, Davis DJ, Wilkop TE, Bulone V, Drakakaki G (2014) Endosidin 7 specifically arrests late cytokinesis and inhibits callose biosynthesis, revealing distinct trafficking events during cell plate maturation. Plant Physiol 165:1019-1034.
Van Damme D, Gadeyne A, Vanstraelen M, Inzéa D, Van Montagua M, De Jaegera G, Russinovaa E, Geelen D (2011) Adaptin-like protein TPLATE and clathrin recruitment during plant somatic cytokinesis occurs via two distinct pathways. Proc Natl Acad Sci USA 108: 615-620.
Teh OK, Shimono Y, Shirakawa M, Fukao Y, Tamura K, Shimada T, Hara Nishimura I (2013) The AP-1 μ adaptin is required for KNOLLE localization at the cell plate tomediate cytokinesis in Arabidopsis. Plant Cell Physiol 54:838-47.
Song K, Jang M, Kim SY, Lee G, Lee JG, Kim DH, Lee Y, Cho W, Hwang I (2012) An A/ ENTH domain-containing protein functions as an adaptor for clathrin-coated vesicles on the growing cell plate in Arabidopsis root cells. Plant Physiol 159:1013- 1025.
Assaad FF, Mayer U,Wanner G, Jürgens G (1996) The KEULE gene is involved in cytokinesis in Arabidopsis. Mol Gen Genet 253:267-77.
Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jurgens G (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 139:1485-1493.
El Kasmi F, Krause C, Hiller U, Stierhof YD, Mayer U, Conner L, Kong L, Reichardt I, Sanderfoot AA, Jürgens G (2013) SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Mol Biol Cell 24:1593- 601.
Rybak K, Steiner A, Synek L, Klaeger S, Kulich I, Facher E, Wanner G, Kuster B, Zarsky V, Persson S, Assaad FF (2014) Plant cytokinesis is orchestrated by the sequential action of the TRAPPII and exocyst tethering complexes. Dev Cell 29:607- 20.
Jaber E, Thiele K, Kindzierski V, Loderer C, Rybak K, Jürgens G, Mayer U, Söllner R, Wanner G, Assaad FF (2010) A putative TRAPPII tethering factor is required for cell plate assembly during cytokinesis in Arabidopsis. New Phytol 187:751-763.
Thellmann M, Rybak K, Thiele K, Wanner G, Assaad FF (2010) Tethering factors required for cytokinesis in arabidopsis. Plant Physiol154:720-732.
Fendrych M, Synek L, Pecenkova T, Toupalova H, Cole R, Drdova E, Nebesárová J, Sedinová M, Hála M, Fowler JE, Zársky V (2010) The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell 22:3053-65.
Minamino N, Ueda T (2019) RAB GTPases and their effectors in plant endosomal transport. Curr Opin Plant Biol 52:61-68.
Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans- Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101-123.
Davis DJ, McDowell SC, Park E, Hicks G, Wilkop TE, Drakakaki G (2015) The RAB GTPase RABA1e localizes to the cell plate and shows distinct subcellular behavior from RABA2a under Endosidin 7 treatment. Plant Signal Behav 11:1-4.
Molendijk AJ, Bischoff F, Rajendrakumar CSV, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779-2788.
Jaber E, Thiele K, Kindzierski, Loderer C, Rybak K, Jürgens G, Mayer U, Söllner R, Wanner G, Assaad FF (2010) A putative TRAPPII tethering factor is required for cell plate assembly during cytokinesis in Arabidopsis. New Phytol 187:751-763.
Richter S, Kientz M, Brumm S, Nielsen ME, Park M, Gavidia R, Krause C, Voss U, Beckmann H, Mayer U, Stierhof YD, Jürgens G (2014) Delivery of endocytosed proteins to the cell-division plane requires change of pathway from recycling to secretion. eLife 3:1-4.
Dhonukshe P, Baluška F, Schlicht M, Hlavacka A, Šamaj J, Friml J, Gadella TWJ (2006). Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137-150.
Mayer U, Büttner G, Jürgens G (1993) Apicalbasal pattern forma- tion in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117:149- 162.
Gu X, Verma DPS (1997) Dynamics of phragmoplastin in living cells during cell plate formation and uncoupling of cell elongation from the plane of cell division. Plant Cell 9:157-169.
Fujimoto M, Arimura SI, Nakazono M, Tsutsumi N (2008) Arabidopsis dynamin related protein DRP2B is co-localized with DRP1A on the leading edge of the forming cell plate. Plant Cell Rep 27:1581-1586.
Kang BH, Busse JS, Bednarek SY (2003) Members of the Arabidopsis dynamin-like gene family, ADL1, are essential for plant cytokinesis and polarized cell growth. Plant Cell 15:899-913.
Ahn G, Kim H, Kim DH, Hanh H, Yoon Y, Singaram I, et al (2017) SH3 domain containing protein 2 plays a crucial role at the step of membrane tubulation during cell plate formation. Plant Cell 29:1388-1405.
Van Damme D, Gadeyne A, Vanstraelen M, Inzé D, Van Montagu MCE, De Jaeger G, Russinova E, Geelen D (2011) Adaptin-like protein TPLATE and clathrin recruitment during plant somatic cytokinesis occurs via two distinct pathways. Proc Natl Acad Sci USA 108:615-620.
Gadeyne A, Sánchez-Rodríguez C, Vanneste S, et al (2014) The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell 156:691-704.
Thiele K, Wanner G, Kindzierski V, Jürgens G, Mayer U, Pachl F, Assaad FF (2009) The timely deposition of callose is essential for cytokinesis in Arabidopsis. Plant J 58:13-26.
Miart F, Desprez T, Biot E, Morin H, Belcram K, Höfte H, Gonneau M, Vernhettes S (2014) Miart F, Desprez T, Biot E, et al. Spatiotemporal analysis of cellulose synthesis during cell plate formation in Arabidopsis. Plant J 77:71-84.
Zuo J, Niu QW, Nishizawa N, Wu Y, Kost B, Chua NH (2000) KORRIGAN, an Arabidopsis endo-1,4-β-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 12:1137-1152. Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103:999- 1004.
Szövényi P, Waller M, Kirbis A (2019) Evolution of the plant body plan. Curr Top Dev Biol 131:1-34.
Timme RE, Bachvaroff TR, Delwiche CF (2012) Broad phylogenomic sampling and the sister lineage of land plants. PLoS One 7:1-12.
López-Bautista JM, Waters DA, Chapman RL (2003) Phragmoplastin, green algae and the evolution of cytokinesis. Int J Syst Evol Microbiol 53:1715-1718.
Buschmann H, Zachgo S (2016) The Evolution of Cell Division: From Streptophyte Algae to Land Plants. Trends Plant Sci 21:872-883.
Nishiyama T, Sakayama H, de Vries J, Van Der Straeten D, Gould SB, Rensing SA (2018) The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell 174:448-464.
Pickett-Heaps J (1967) Ultrastructure and Differentiation in Chara sp. II. Mitosis. Aust J Biol Sci 20:883.
Cook ME, Graham LE, Botha CEJ, Lavin CA (1997) Comparative ultrastructure of plasmodesmata of Chara and selected bryophytes: Toward an elucidation of the evolutionary origin of plant plasmodesmata. Am J Bot 84:1169-1178.
Cook ME, Graham LE, Lavin CA (1998) Cytokinesis and nodal anatomy in the charophycean green alga Chara zeylanica. Protoplasma 203:65-74.
Marchant HJ, Pickett-Heaps JD (1973) Mitosis and cytokinesis in Coleochaete scutata. J Phycol 9:461-471.
Cook ME (2004) Cytokinesis in Coleochaete orbicularis (charophyceae): An ancestral mechanism inherited by plants. Am J Bot 91:313-320.
Brown RC, Lemmon BE, Graham LE (1994) Morphogenetic plastid migration and microtubule arrays in mitosis and cytokinesis in the green alga Coleochaete orbicularis. Am J Bot 81:127-133.
Doty KF, Betzelberger AM, Kocot KM, Cook ME (2014) Immunofluorescence localization of the tubulin cytoskeleton during cell division and cell growth in members of the Coleochaetales (Streptophyta). J Phycol 50:624-639.
Cutler SR, Ehrhardt DW (2002) Polarized cytokinesis in vacuolate cells of Arabidopsis. Proc Natl Acad Sci USA 99:2812-2817.
Fowke LC, Pickett-Heaps JD (1969) Cell division in Spirogyra. II. Cytokinesis. J Phycol 281:279-281.
Mcintosh K, Pickett-heaps JD, Gunningt BES (1995) Cytokinesis in Spirogyra : Integration of Cleavage and Cell-Plate Formation. Int J Plant Sci 156:1-8.
Sawitzky H, Grolig F (1995) Phragmoplast of the Green Alga Spirogyra Is Functionally Distinct from the Higher Plant Phragmoplast. J Cell Biol 130:1359- 1371.
Pickett-Heaps JD, Wetherbee R (1987) Spindle function in the green alga Mougeotia: Absence of anaphase A correlates with postmitotic nuclear migration. Cell Motil Cytoskeleton 7:68-77.
Bakker ME, Lokhorst GM (987) Ultrastructure of mitosis and cytokinesis in Zygnema sp. (Zygnematales, Chlorophyta). Protoplasma 138:105-118.