2022, Número 1
Celulas troncales aisladas de piezas dentales provenientes de población mexicana el Estado de Jalisco
Sánchez-Gómez I, Gonzáles-Pelayo GL, Santibáñez-Escobar LP, Gaona-Bernal J, Villa-García Torres LS, Márquez-García E, Avelar-Rodríguez FJ, Marino-Marmolejo EN, Flores-Hernández FY
Idioma: Español
Referencias bibliográficas: 35
Paginas: 16-27
Archivo PDF: 482.39 Kb.
RESUMEN
La investigación sobre células troncales en regeneración de
tejidos dañados ha crecido debido al potencial de mejorar
diversas afecciones. Las células troncales de piezas dentales
son una opción para ser utilizadas en ingeniería de tejidos,
requiriendo contar con procedimientos estandarizados para
su procesamiento con el fin de lograr un adecuado aislamiento
y cultivo.
Objetivo: Realizar una evaluación de distintos
procedimientos para aislamiento, cultivo y propagación de
células troncales de pulpa dental (DPSC por sus siglas en
inglés).
Materiales y Métodos: Estudio cuasiexperimental
con muestreo no probabilístico para aislamiento de DPSC,
donadas bajo consentimiento informado. Se probaron
diversos métodos; para el acceso a la cámara pulpar se probó
la perforación mecánica utilizando fresadoras y piezas de
mano de alta velocidad, además de un método de corte a nivel
de tercio cervical dividiendo corona y raíz utilizando una
pieza de mano de baja velocidad con disco de diamante. Se
extrajo la pulpa dental disgregando las células por diversos
métodos enzimáticos procediendo al cultivo en monocapa
para el aislamiento. La fenotipificación celular fue por
citometría de flujo detectando marcadores mesenquimales
(CD44, 73, 90, 105), además se realizaron ensayos de
multidiferenciación hacia linajes osteogénico, condrogénico
y adipogénico. Por último, las DPSC se criopreservaron en
nitrógeno líquido.
Resultados: Procedimiento eficaz para la
obtención, aislamiento y proliferación de DPSC, confirmando
con morfología, expresión de marcadores mesenquimales,
multipotencialidad y adhesión en plástico.
Conclusión: Se
logró estandarizar un protocolo de aislamiento de DPSC
(transporte, procesamiento de piezas dentales, aislamiento,
cultivo y proliferación), observando mejor aislamiento de
DPSC a partir de molares con ápice inmaduro, provenientes
de pacientes con promedio de edad de 25 años.
REFERENCIAS (EN ESTE ARTÍCULO)
Gomzikova MO, Rizvanov AA. Current Trends in Regenerative Medicine: From Cell to Cell-Free Th erapy. Bionanoscience 2017;7(1):240–245.
Uder C, Brückner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: Features and applications. Cytom Part A 2018;93(1):32–49.
Yoshida S, Tomokiyo A, Hasegawa D, Hamano S, Sugii H, Maeda H. Insight into the role of dental pulp stem cells in regenerative therapy. Biology (Basel) 2020;9(7):1–24.
Lan X, Sun Z, Chu C, Boltze J, Li S. Dental pulp stem cells: An attractive alternative for cell therapy in ischemic stroke. Front Neurol 2019;10(JUL):824.
Cho J, D’Antuono M, Glicksman M, Wang J, Jonklaas J. A review of clinical trials: mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. Am J Stem Cells 2018;7(4):82–93.
Masthan KMK, Leena Sankari S, Aravindha Babu N, Gopalakrishnan T. Mystery inside the tooth: Th e dental pulp stem cells. J Clin Diagnostic Res 2013;7(5):945–947.
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Research and Th erapy. 2019;10(1):68.
Baniebrahimi G, Khanmohammadi R, Mir F. Teeth-derived stem cells: A source for cell therapy. J Cell Physiol 2019;234(3):2426–2435.
Huang GTJ, Gronthos S, Shi S. Critical reviews in oral biology & medicine: Mesenchymal stem cells derived from dental tissues vs. those from other sources: Th eir biology and role in Regenerative Medicine. J Dent Res 2009;88(9):792–806.
Jesús L, Orta G. Investigación con células madre de origen dentario . Actualización . Gac Dent 2011;223:118–129.
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2000;97(25):13625–30.
Hendriks J, Riesle J, Blitterswijk CA van. Co-culture in cartilage tissue engineering. J Tissue Eng Regen Med 2010;4(7):524–531.
Kawashima N, Okiji T. Odontoblasts: Specialized hard-tissueforming cells in the dentin-pulp complex. Congenit Anom (Kyoto) 2016;56(4):144–153.
Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003;18(4):696–704.
Armand Lorié M, Legrá Silot E, Ramos de la Cruz M, Matos Armand F. Terceros molares retenidos. Actualización. Rev Inf Científi ca 2015;92(4):995–1010.
Campbell JH. Pathology Associated with the Th ird Molar. Oral and Maxillofacial Surgery Clinics of North America. 2013;25(1):1–10.
Lizier NF, Kerkis A, Gomes CM, Hebling J, Oliveira CF, Caplan AI, et al. Scaling-Up of Dental Pulp Stem Cells Isolated from Multiple Niches. PLoS One 2012;7(6):e39885.
Valencia R, Espinosa R, Nario H. Panorama actual de las células madre de la pulpa de dientes primarios y permanentes. Rodyb 2013;2:1–33.
Lourenço Neto N, Pereira LF, Marques NCT, Prado MTO, Vitor LLR, Tokuhara CK, et al. Protocolo de armazenamento de células pulpares de dentes decíduos humanos. Brazilian Dent Sci 2017;20(3):126– 131.
Pilbauerová N, Suchánek J. Cryopreservation of Dental Stem Cells. Acta Medica (Hradec Kral Czech Republic) 2018;61(1):1–7.
Tomlin A, Sanders MB, Kingsley K. Th e eff ects of cryopreservation on human dental pulp-derived mesenchymal stem cells. Biomater Biomech Bioeng 2016;3(2):105–114.
Perry BC, Zhou D, Wu X, Yang FC, Byers MA, Chu T-MMG, et al. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng - Part C Methods 2008;14(2):149–156.
Viña Almunia J. Obtención y caracterización de células madre de pulpa dental humanas e interacción con β -fosfato tricálcico. 2013;:202.
Brizuela C C, Galleguillos G S, Carrión A F, Cabrera P C, Luz C P, Inostroza S C. Aislación y Caracterización de Células Madre Mesenquimales Provenientes de Pulpa y Folículo Dentario Humano. Int J Morphol 2013;31(2):739–746.
Vemuri MC, Chase LG, Rao MS. Mesenchymal stem cell assays and applications. Methods in molecular biology (Clift on, N.J.). 2011;698:3–8.
Yasui T, Mabuchi Y, Morikawa S, Onizawa K, Akazawa C, Nakagawa T. Isolation of dental pulp stem cells with high osteogenic potential. 2017;:1–10.
Gioventù S, Andriolo G. A novel method for banking dental pulp stem cells. 2012;(July 2014). doi:10.1016/j.transci.2012.06.005.
Magallanes Fabián M, Carmona Rodríguez B, Álvarez Pérez MA. Aislamiento y caracterización parcial de células madre de pulpa dental. Rev odontológica Mex 2010;14(1):15–20.
Takeda T, Tezuka Y, Horiuchi M, Hosono K, Iida K, Hatakeyama D, et al. Characterization of dental pulp stem cells of human tooth germs. J Dent Res 2008;87(7):676–681.
D’Aquino R, Papaccio G, Laino G, Graziano A. Dental pulp stem cells: A promising tool for bone regeneration. Stem Cell Rev 2008;4(1):21–26.
Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Okano T, et al. Neurosphere generation from dental pulp of adult rat incisor. Eur J Neurosci 2008;27(3):538–548.
Beltrán NE, González CH. Técnicas de Cultivos Celulares e Ingeniería de Tejidos. 2016.
Mastrolia I, Foppiani EM, Murgia A, Candini O, Samarelli AV, Grisendi G, et al. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Transl Med 2019;8(11):1135–1148.
Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy 2018;20(4):479–498.
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defi ning multipotent mesenchymal stromal cells. Th e International Society for Cellular Th erapy position statement. Cytotherapy 2006;8(4):315–7.