2021, Número 4
<< Anterior Siguiente >>
An Med Asoc Med Hosp ABC 2021; 66 (4)
Compresión maligna de la médula espinal y los cambios microvasculares inducidos
Shveid GD, Noguez RA, Moreno JS
Idioma: Ingles.
Referencias bibliográficas: 78
Paginas: 273-282
Archivo PDF: 264.86 Kb.
RESUMEN
La compresión de la médula espinal es considerada una emergencia neurooncológica. Cualquier paciente oncológico con dolor en la columna debe recibir una evaluación completa y tratamiento oportuno. Aunque la incidencia específica es desconocida, análisis post mortem han mostrado que puede existir una compresión medular metastásica en 5-10% de pacientes con cáncer avanzado. La compresión de la médula espinal puede ser la manifestación inicial de una neoplasia en hasta 20% de pacientes con neoplasias malignas, en especial aquellas que debutan de manera metastásica. La neoplasia más asociada a dicha compresión es el cáncer de pulmón en 15% de los casos y mama y próstata en mujeres y hombres, respectivamente. La compresión vascular, específicamente del plexo venoso epidural, puede resultar de una lesión secundaria, causando infartos venosos y afección neurológica irreversible, al igual que aumento en la permeación vascular y generación subsecuente de edema, los cuales cuentan con diferentes mecanismos e interacciones patológicas. El objetivo del tratamiento es preservar la función nerviosa, reducir el dolor y los síntomas asociados, al igual que prevenir la discapacidad. Es de suma importancia que el tratamiento inicie en las primeras 24 horas de que se haga el diagnóstico y puede variar desde esteroides a radioterapia, cirugía y tratamiento paliativo. Por lo general, el pronóstico de una persona con compresión medular por una neoplasia maligna es pobre, oscilando entre tres y seis meses de supervivencia posterior al diagnóstico.
REFERENCIAS (EN ESTE ARTÍCULO)
National Collaborating Centre for Cancer (UK). Metastatic spinal cord compression: diagnosis and management of patients at risk of or with metastatic spinal cord compression. Cardiff (UK): National Collaborating Centre for Cancer (UK); 2008.
Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview structure, regulation, and clinical implications. Neurobiol Dis. 2004; 16 81): 1-13.
Higashida RT, Halbach VV, Tsai FY, Norman D, Pribram HF, Mehringer CM et al. Interventional neurovascular treatment of traumatic carotid and vertebral artery lesions: results in 234 cases. AJR Am J Roentgenol. 1989; 153 (3): 577-582.
Janzer RC, Raff MC. Astrocytes induce blood brain barrier properties in endothelial cells. Nature. 1987; 325 (6101): 253- 257.
Schlosshauer B, Herzog KH. Neurothelin: an inducible cell surface glycoprotein of blood-brainbarrier-specific endothelial cells and distinct neurons. J Cell Biol. 1990; 110 (4): 1261- 1274.
Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res. 1998; 53 (6): 637-644.
Bradbury MWB. The blood-brain barrier transport across the cerebral endothelium. Circ Res. 1985; 57 (2): 213-222.
Herrera DA, Vargas SA, Dublin AB. Endovascular treatment of traumatic injuries to the vertebral artery. AJNR Am J Neuroradiol. 2008; 29 (8): 1585-1589.
Dommisse GF. The blood supply of the spinal cord: a critical vascular zone in spinal surgery. J Bone Joint Surg. 1974; 56 (2): 225-235.
Sharma HS. Early microvascular reactions and blood-spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection. J Neural Transm. 2011; 118: 155-176.
Goshgarian HG. Blood supply of the spinal cord. In: Lin VW, Cardenas DD, Cutter NC, Frost FS, Hammond MC, Lindblom LB et al. Spinal cord medicine: principles and practice. New York, NY: Demos Medical Publishing; 2003, 31-32.
Turnbull IM. Microvasculature of the human spinal cord. Neurosurg. 1971; 35 (2): 141-147.
Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with enfasis on vascular mechanisms. J Neurosurg. 1991; 75 (1): 15-26.
Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood- spinal cord barrier: morphology and clinical implications. Ann Neurol. 2011; 70 (2): 194-206.
Benton RL, Maddie MA, Gruenthal MJ, Hagg T, Whittemore SR. Neutralizing endogenous VEGF following traumatic spinal cord injury modulates microvascular plasticity but not tissue sparing or functional recovery. Curr Neurovasc Res. 2009; 6 (2): 124-131.
Mautes AE, Weinzierl MR, Donovan F, Noble LJ. Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther. 2020; 80 (7): 673-687.
Bingham WG, Goldman H, Friedman SJ, Murphy S, Yashon D, Hunt WE. Blood flow in normal and injured monkey spinal cord. Neurosurg. 1975; 43: 162-171.
Schievink WI, Vishteh AG, Mcdougall CG, Spetzler RF. Intraoperative spinal angiography. J Neurosurg. 1999; 90 (1 Suppl.): 48-51.
Goodman JH, Bingham WG, Hunt WC. Ultrastructural blood- brain barrier alterations and edema formation in acute spinal cord trauma. J Neurosurg. 1976; 44 (4): 418-424.
Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994; 330 (20): 1431-1438.
Mahoney ET, Benton RL, Maddie MA, Whittemore SR, Hagg T. ADAM8 is selectively up-regulated in endothelial cells and is associated with angiogenesis after spinal cord injury in adult mice. J Comp Neurol. 2009; 512 (2): 243-255.
Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z. Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci. 2002; 22 (17): 7526-7535.
Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. TRENDS in Neurosciences. 2001; 24 (12): 719-725.
Vaquero J, Zurita M, De Oya S, Coca S. Vascular endothelial growth/permeability factor in spinal cord injury. J Neurosurg. 1999; 90 (Suppl. 2): 220-223.
Kaptanoglu E, Okutan O, Akbiyik F, Solaroglu I, Kilinc A, Beskonakli E. Correlation of injury severity and tissue Evans blue content, lipid peroxidation and clinical evaluation in acute spinal cord injury in rats. J Clin Neurosc. 2004; 11 (8): 879-885.
Martiñón S, Ibarra A. Pharmacological Neuroprotective therapy for acute spinal cord injury: state of the art. Mini Rev Med Chem. 2008; 8 (3): 222-230.
Wozniak A, Kasprzak HA, Wozniak B, Drewa G, Beuth W. Lipid peroxidation and antioxidant potential in patients with cervical spinal cord injury. Neurol Neurochir Pol. 2003; 37 (5): 1025-1035.
Sharma HS, Olsson Y, Nyberg F, Dey PK. Prostaglandins modulate alterations of microvascular permeability, blood flow, edema and serotonin levels following spinal cord injury: an experimental study in the rat. Neuroscience. 1993; 57 (2): 443-449.
Brown A, Jacob JE. Genetic approaches to autonomic dysreflexia. Prog Brain Res. 2006; 152: 299-313.
Jacob JE, Pniak A, Weaver LC, Brown A. Autonomic dysreflexia in a mouse model of spinal cord injury. Neuroscience. 2001; 108 (4): 687-693.
Laird AS, Carrive P, Waite PM. Cardiovascular and temperature changes in spinal cord injured rats at rest and during autonomic dysreflexia. J Physiol. 2006; 577 (2): 539-548.
Cormier CM, Mukhida K, Walker G, Marsh DR. Development of autonomic dysreflexia after spinal cord injury is associated with a lack of serotonergic axons in the intermediolateral cell column. J Neurotrauma. 2010; 27 (10): 1805-1818.
Tator CH, Koyanagi I. Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg. 1997; 86 (3): 483-492.
Imperato-Kalmar EL, McKinney A, Schnell L, Rubin BP, Schwab ME. Local changes in vascular architecture following partial spinal cord lesion in the rat. Exp Neurol. 1997; 145 (2 Pt 1): 322-328.
Dohrmann GJ, Wagner F, Bvcy P. The microvasculature in transitory traumatic paraplegia: an electron microscopic study in the monkey. Neurosurg. 1971; 35: 263-271.
Shingu H, Kimura I, Nasu Y, Shiotani A, Oh-hama M, Hijioka A et al. Microangiographic study of spinal cord injury and myelopathy. Paraplegia. 1989; 27 (3): 182-189.
Jaeger CB, Blight AR. Spinal cord compression injury in guinea pigs: structural changes of endothelium and its perivascular cell associations after blood-brain barrier breakdown and repair. Exp Neurol. 1997; 144 (2): 381-399.
Hu JZ, Wu TD, Zhang T, Zhao YF, Pang J, Lu HB. Three- dimensional alteration of microvasculature in a rat model of traumatic spinal cord injury. J Neurosci M. 2012; 204: 150- 158.
Pan W, Banks WA, Kastin AJ. Blood-brain barrier permeability to ebiratide and TNF in acute spinal cord injury. Exp Neurol. 1997; 146 (2): 367-373.
Guízar-Sahagún G, Velasco-Hernández L, Martínez-Cruz A, Castañeda-Hernández G, Bravo G, Rojas G et al. Systemic microcirculation after complete high and low thoracic spinal cord section in rats. J Neurotrauma. 2004; 21 (11): 1614-1623.
Rouleau P, Guertin PA. A valuable animal model of spinal cord injury to study motor dysfunctions, comorbid conditions, and aging associated diseases. Curr Pharm Des. 2013; 19 (24): 4437-4447.
Attal N, Mazaltarine G, Perrouin-Verbe B, Albert T. Chronic neuropathic pain management in spinal cord injury patients. What is the efficacy of pharmacological treatments with a general mode of administration? (oral, transdermal, intravenous). Ann Phys Rehabil Med. 2009; 52 (2): 124-141.
Gault D, Morel-Fatio M, Albert T, Fattal C. Chronic neuropathic pain of spinal cord injury: what is the effectiveness of psychocomportemental management? Ann Phys Rehabil Med. 2009; 52 (2): 167-172.
Prévinaire JG, Nguyen JP, Perrouin-Verbe B, Fattal C. Chronic neuropathic pain in spinal cord injury: efficiency of deep brain and motor cortex stimulation therapies for neuropathic pain in spinal cord injury patients. Ann Phys Rehabil Med. 2009; 52 (2): 188-193.
Rabchevsky AG, Patel SP, Lyttle TS, Eldahan KC, O'Dell CR, Zhang Y et al. Effects of gabapentin on muscle spasticity and both induced as well as spontaneous autonomic dysreflexia after complete spinal cord injury. Front Physiol. 2012; 3: 329.
Ray SK, Hogan EL, Banik NL. Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev. 2003; 42 (2): 169-185.
Karlsson AK. Autonomic dysfunction in spinal cord injury: clinical presentation of symptoms and signs. Prog Brain Res. 2006; 152: 1-8.
Weaver LC, Marsh DR, Gris D, Brown A, Dekaban GA. Autonomic dysreflexia after spinal cord injury: central mechanisms and strategies for prevention. Prog Brain Res. 2006; 152: 245-263.
Benton RL, Maddie MA, Worth CA, Mahoney ET, Hagg T, Whittemore SR. Transcriptomic screening of microvascular endothelial cells implicates novel molecular regulators of vascular dysfunction after spinal cord injury. J Cereb Blood Flow Metab. 2008; 28 (11): 1771-1785.
Loy DN, Crawford CH, Darnall JB, Burke D, Onifer SM et al. Temporal progression of angiogenesis and basal lamina deposition after contusive spinal cord injury in the adult rat. J Comp Neurol. 2002; 445 (4): 308-324.
Benton RL, Maddie MA, Minnillo DR, Hagg T, Whittemore SR. Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse. J Comp Neurol. 2008; 507 (1): 1031-1052.
Curt A, Schwab ME, Dietz V. Providing the clinical basis for new interventional therapies: refined diagnosis and assessment of recovery after spinal cord injury. Spinal Cord. 2004; 42 (1): 1-6.
Ibarra A, Martiñón S. Pharmacological approaches to induce neuroregeneration in spinal cord injury: an overview. Curr Drug Discov Technol. 2009; 6 (2): 82-90.
Widenfalk J, Lipson AA, Jubran BM, Hofstetter AC, Ebendal AT, Cao Y et al. Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience. 2003; 120 (4): 951-960.
Guízar-Sahagún G, Ibarra A, Espitia A, Martínez A, Madrazo I, Franco-Bourland RE et al. Glutathione monoethyl ester improves functional recovery, enhances neuron survival, and stabilizes spinal cord blood flow after spinal cord injury in rats. Neuroscience. 2005; 130 (30: 639-649.
Chen B, Zuberi M, Borgens RB, Cho Y. Affinity for, and localization of, PEG-functionalized silica nanoparticles to sites of damage in an ex vivo spinal cord injury model. J Biol Eng. 2012; 6 (1): 18.
Baptiste DC, Austin JW, Zhao W, Nahirny A, Sugita S, Fehlings MG. Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury. J Neuropathol Exp Neurol. 2009; 68 (6): 661-676.
Suzer T, Coskun E, Islekel H, Tahta K. Neuroprotective effect of magnesium on lipid peroxidation and axonal function after experimental spinal cord injury. Spinal Cord. 1999; 37 (7): 480-484.
Pannu R, Barbosa E, Singh AK, Singh I. Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res. 2005; 79 (3): 340-350.
Liu F, You SW, Yao LP, Liu HL, Jiao XY, Shi M et al. Secondary degeneration reduced by inosine after spinal cord injury in rats. Spinal Cord. 2006; 44 (7): 421-426.
Benowitz LI, Goldberg DE, Madsen JR, Soni D, Irwin N. Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury. Proc Natl Acad Sci USA. 1999; 96 (23): 13486-13490.
Kapadia R, Yi JH, Vemuganti R. Mechanisms of anti- inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci. 2008; 13: 1813-1826.
Ray SK, Banik NL. Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord. 2003; 2 (3): 173-189.
Carragher NO. Calpain inhibition: a therapeutic strategy targeting multiple disease states. Curr Pharm Des. 2006; 12 (5): 615-638.
Lee JY, Choi SY, Oh TH, Yune TY. 17β-Estradiol inhibits apoptotic cell death of oligodendrocytes by inhibiting RhoA- JNK3 activation after spinal cord injury. Endocrinology. 2012; 153 (8): 3815-3827.
Kopp MA, Liebscher T, Niedeggen A, Laufer S, Brommer B, Jungehulsing GJ et al. Small-molecule-induced Rho- inhibition: NSAIDs after spinal cord injury. Cell Tissue Res. 2012; 349 (1): 119-132.
Pakulski C. Neuroprotective properties of sex hormones. Anestezjol Intens Ter. 2011; 43 (2): 113-118.
Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC et al. A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma. 2011; 28 (8): 1545-1588.
Schwartz G, Fehlings MG. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg. 2001; 94 (2 Suppl): 245-256.
Bakiri Y, Hamilton NB, Karadottir R, Attwell D. Testing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter. Glia. 2008; 56 (2): 233-240.
Priestley JV, Michael-Titus AT, Tetzlaff W. Limiting spinal cord injury by pharmacological intervention. Handb Clin Neurol. 2012; 109: 463-484.
Cerri G, Montagna M, Madaschi L, Merli D, Borroni P, Baldissera F et al. Erythropoietin effect on sensorimotor re cove ry after con tusi ve spi n al cor d i n j ury: an electrophysiological study in rats. Neuroscience. 2012; 219: 290-301.
Espinosa-Jeffrey A, Oregel K, Wiggins L, Valera R, Bosnoyan K, Agbo C et al. Strategies for endogenous spinal cord repair: HPMA hydrogel to recruit migrating endogenous stem cells. Adv Exp Med Biol. 2012; 760: 25-52.
Jou IM. Effects of core body temperature on changes in spinal somatosensory-evoked potential in acute spinal cord compression injury: an experimental study in the rat. Spine (Phila Pa 1976). 2000; 25 (15): 1878-1885.
Lo TP Jr, Cho KS, Garg MS, Lynch MP, Marcillo AE, Koivisto DL et al. Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. J Comp Neurol. 2009; 514 (5): 433-448.
Dietrich WD 3rd. Therapeutic hypothermia for spinal cord injury. Crit Care Med. 2009; 37 (7 Suppl): S238-242.
Dietrich WD, Cappuccino A, Cappuccino H. Systemic hypothermia for the treatment of acute cervical spinal cord injury in sports. Curr Sports Med Rep. 2011; 10 (1): 50-54.
Temiz C, Solmaz I, Tehli O, Kaya S, Onguru O, Arslan E et al. The effects of splenectomy on lipid peroxidation and neuronal loss in experimental spinal cord ischemia/reperfusion injury. Turk Neurosurg. 2013; 23 (1): 67-74.
NIVEL DE EVIDENCIA
III