2019, Número 4
<< Anterior Siguiente >>
Rev Cubana Plant Med 2019; 24 (4)
Composición química del aceite esencial de las flores de Myrcia guianensis (Aubl.) DC
Pereira MFAC, Cruvinel SW, de Souza CCF, de Souza LF
Idioma: Portugués
Referencias bibliográficas: 27
Paginas: 1-12
Archivo PDF: 436.18 Kb.
RESUMEN
Introducción: la especie Myrcia guianensis, conocida popularmente por “guamirim” es una especie semi-arbustiva encontrada en el Cerrado brasileño. Esta especie anualmente presenta grandes inflorescencias en panículas terminales o auxiliares de color blanco, con leve aroma y pequeños frutos globosos de coloración roja a morada.
Objetivos: evaluar el rendimiento y la composición del aceite esencial de las flores de Myrcia guianensis recolectadas en un área de Cerrado brasileño.
Métodos: Las inflorescencias fueron recolectadas a las primeras horas de la mañana. Alícuotas de 100 g fueron pesadas y se procedió a la extracción del aceite esencial por sistema de Clevenger. El aceite esencial fue evaluado cuanto al rendimiento en porcentaje y cuanto a la composición química obtenida por cromatografía gaseosa con espectrometría de masas.
Resultados: el aceite esencial de las flores de M. guianensis presentó coloración incolora, rendimiento de extracción del 0,07%. En cuanto al análisis por cromatografía gaseosa, se obtuvieron 42 compuestos volátiles, siendo los más representativos el Metil salicilato con 11,13 %, Geraniol con 8,03 %, Eugenol con 8,12 %, Aristoloqueno con 4,89 % y Ebieta- 8,12-dieno con 7,25 % de área relativa.
Conclusión: la caracterización química del aceite esencial de las flores de M. guianensis proporcionó mayor alcance al estudio de esta especie, ya que se trata de un taxón todavía poco estudiado. Se evidenció una riqueza en compuestos volátiles obtenidos en las flores, que pueden ser empleados en diversas modalidades industriales farmacéuticas, insumos agrícolas, bioingeniería y alimentos.
REFERENCIAS (EN ESTE ARTÍCULO)
Bueno ML, Oliveira-Filho ATde, Pontara V, Pott A, Damasceno-Júnior GA. Flora arbórea do Cerrado de Mato Grosso do Sul. Iheringia, 2018; 73(supl.): 53-64.
Mendonça RC, Felfili JM, Walter BMT, Silva-Jr MC, Rezende AV, Filgueiras TS, Nogueira PE, Fagg CW. 2008. Flora vascular do cerrado: Checklist com 12.356 espécies. In Cerrado: ecologia e flora (Sano SM, Almeida SP, Ribeiro JF, eds.). Embrapa, Planaltina, p. 417-1279.
Myers N, Mittermeier RA, Fonseca GAB, Kent J. Biodiversity hotspots for Conservation priorities. Nature, 2000; 403(6772): 853-8.
Joly AB. Introdução à taxonomia vegetal, CEN: São Paulo, 1979.
Cerqueira MDde, Marques EdeJ, Martins D, Roque NF, Cruz FG, Guedes MLdaS. Variação sazonal da composição do óleo essencial de Myrcia salzmannii Berg. (Myrtaceae). Quím Nova, 2009; 32(6): 1544-8.
Stefanello MÉA, Cervi AC, Jr AW, Simionatto EL. Composição e variação sazonal do óleo essencial de Myrcia obtecta (O. Berg) Kiaersk. var. obtecta, Myrtaceae. Braz J Pharmacog, 2009; 20(1): 82-6.
Limberger RP, Sobral M, Henriques AT, Menut C, Bessière J-M. Óleos voláteis de espécies de Myrcia nativas do Rio Grande do Sul. Quím Nova, 2004; 27(6): 916-19.
Russo EM, Reichelt AA, De-Sá JR, Furlanetto RP, Moisés RC, kasamatsu TS, Chacra AR. Clinical trial of Myrcia uniflora and Bauhinia forficata leaf extracts in normal and diabetic patients. Braz J Med Biol Res, 1990; 23(1): 11-20.
Corrêa P. Dicionário das plantas úteis do Brasil e das exóticas cultivadas. Imprensa Nacional, Ministério da Agricultura: Rio de Janeiro, 1984, vol. 2.
Vogado NO, Camargo MGGde, Locosselli GM, Morellato LPC. Edge effects on the phenology of the guamirim, Myrcia guianensis (Myrtaceae), a cerrado tree, Brazil. Trop Conser Scie, 2016; 9(1): 291-312.
Gressler E, Pizo MA, Morellato LPC. Polinização e dispersão de sementes em Myrtaceae do Brasil. Rev Bras Bot, 2006; 29: 509-30.
Proença CEB, Gibbs PE. Reproductive Biology of eight sympatric Myrtaceae from Central Brazil. New Phytologist, 1994; 126: 343-54.
Staggemeier VG, Diniz-Filho JAF, Zipparro VB, Gressler E, Castro ER, Mazine F, Costa IR, Lucas E, Morellato LPC. Clade-specific responses regulate phenological patterns in Neotropical Myrtaceae. Perpec in Plant Ecol, Evol and Systematics, 2015; 17(6): 476-90.
Cole RA, Haber WA, Setzer WN. The leaf oil composition of Myrcia splendens from Monteverde, Costa Rica. J Essent Oil-Bear Plants, 2008; 11: 41-4.
Stefanello MEA, Cervi AC, Wisniewski Jr A, Simionatto EL. Essential oil composition of Myrcia laruotteana Camb. J Essent Oil Res, 2007; 19: 466-467.
Gottlieb OR, Kotesu ML, Magalhães M, Guilherme M, Mendes P, Rocha A, Silva M, Wilberg V. Óleos essenciais da Amazônia VII. Acta Amaz, 1981; 11: 143-8.
Henriques AT, Sobral M, Bridi R, Vérin P, Menut C, Lamaty G, Bessière J-M. Essential oils from five southern Brazilian species of Myrcia (Myrtaceae). J Essent Oil Res, 1997; 9: 13-8.
Zoghbi MdasGB, Andrade EHA, Da Silva MHL, Carreira LMM, Maia JGS. Essential oils from three Myrcia species. Flavour Fragr J, 2003; 18: 421-4.
Adams RP. Identification of Essential Oils Components by Gas chromatography/Mass Spectrometry, Allured Publ. Corp., Carol Stream, IL., 2007.
Cseke LJ, Kaufman PB, Kirakosyan A. The Biology of essential oils in the pollination of flowers. Nat Prod Commun, 2007; 2: 1317-36.
Edagi FK, Sestari I, Sasaki FF, Terra FdeAM, Kluge RA. Compostos salicilados e tolerância de nêsperas ao frio. Pesq Agropec Bras, 2011; 46(5): 563-6.
Araújo JCLVde, Lima EdeO, De Ceballos BSO, Freire KRdeL, Souza ELdeS, Filho LS. Ação antimicrobiana de óleos essenciais sobre microrganismos potencialmente causadores de infecções oportunistas. J Tropic Pathology, 2004; 33(1): 55-64.
Novelino MAS, Daemon E, Soares GLG. Avaliação da atividade repelente do timol, mentol, salicilato de metila e ácido salicílico sobre larvas de Boophillus microplus (Canestrini, 1887) (Acari: Ixodidae). Arq Bras Med Vet Zootec, 2007; 59(3): 700-4.
Liu W, Zhang R, Cheng T, Cao Y, Li X, Guo J, Liu H, Xian M. Engineering Escherichia coli for high-yield Geraniol production with biotransformation of geranyl acetate to Geraniol under fed-batch culture. Biotechnol Biofuels, 2016; 9(58): 2-8.
Bodell WJ, Ye Q, Pathak DN, Pongracz K. Oxidation of eugenol to form DNA adducts and 8-hydroxy-2’-deoxyguanosine: role of quinone methide derivative in DNA addcut formation. J carcinog, 1998; 19(3): 437-43.
Cane DE, Kang I. Aristolochene synthase: purification, molecular cloning, high-level expression in Escherichia coli, and characterization of the Aspergilus terreus cyclase. Arch Biochem Biophys, 2000; 376(2): 354-64.
Teixeira AP, Batista O, Simões MF, Nascimento J, Duarte A, Torre MCdela, Rodríguez B. Abietane diterpenoids from Plectranthus grandidentatus. Phytochem, 1997; 44(2): 325-7.