2021, Número 3
<< Anterior Siguiente >>
Rev Biomed 2021; 32 (3)
Análisis de biomarcadores para el seguimiento de pacientes con enfermedad de Gaucher
Da Silva-José TD, Juárez-Vázquez CI, García-Ortiz JE
Idioma: Español
Referencias bibliográficas: 79
Paginas: 147-160
Archivo PDF: 138.82 Kb.
RESUMEN
Los biomarcadores son una herramienta importante en el diagnóstico,
seguimiento y evaluación de la respuesta al tratamiento en pacientes
con enfermedad de Gaucher (EG). El presente trabajo
tiene como objetivo una revisión bibliográfica
descriptiva para evaluar y analizar los biomarcadores
disponibles, por lo que se describen los tipos, la
utilidad, validez, ventajas y desventajas de cada
uno de ellos. Las bases de datos utilizadas fueron
Pubmed Central, Scielo y Sci-Hub, y en el buscador
Google Académico para encontrar artículos de
revistas no indexadas en estos sitios. Como criterio
de selección fueron incluidas las siguientes palabras
clave: EG; biomarcadores en EG, biomarcadores
para evaluación del tratamiento, biomarcadores
de enfermedades de depósito lisosomal y nuevos
biomarcadores en EG. El principal desafío es la
selección del biomarcador considerando aspectos
de costo-efectividad y disponibilidad en los
Sistemas de Salud. No obstante, en la literatura
se encuentran descritos 19 biomarcadores, de
los cuales en la práctica clínica están validados
internacionalmente solo quitotriosidasa, quimiocina
de activación reguladora pulmonar (CCL18/PARC)
y Glucosilesfingosina (Lyso-Gb1) que evalúan los
efectos clínicos como: normalización de niveles de
hemoglobina y plaquetas, disminución del volumen
visceral e inflamación ósea. De esta manera, los
grupos de expertos recomiendan que al menos uno
de estos biomarcadores sea integrado en el plan de
manejo de pacientes con EG. Por lo tanto, la elección
de un biomarcador proporciona información valiosa
sobre la respuesta al tratamiento, evolución clínica
y podrían servir como elementos claves en el
desarrollo y evaluación de nuevos fármacos.
REFERENCIAS (EN ESTE ARTÍCULO)
Pastores GM, Weinreb NJ, Aerts H, Andria G, Cox TM, Giralt M, et al. Therapeutic goals in the treatment of Gaucher disease. Semin Hematol. 2004;41(4 Suppl 5):4- 14 DOI: 10.1053/j.seminhematol.2004.07.009.
Rosenbloom BE, Weinreb NJ. Gaucher disease: a comprehensive review. Crit Rev Oncog. 2013;18(3):163- 75 DOI: 10.1615/critrevoncog.2013006060.
Giraldo P, de las Guías GdT. Guía de actuación en pacientes con enfermedad de Gaucher tipo 1. Medicina Clínica. 2011;137:55-60 DOI: 10.1016/S0025- 7753(11)70019-7.
Franco-Ornelas S, Gaucher GdEeEd. Consenso mexicano de enfermedad de Gaucher. Revista Médica del Instituto Mexicano del Seguro Social. 2010;48(2):167-86.
Barranger J, O’Rourke E. Lessons learned from the development of enzyme therapy for Gaucher disease. Journal of inherited metabolic disease. 2001;24:89-96 DOI: 10.1023/a:1012440428282.
Nasher O, Gupta A. An ACE diagnosis. BMJ Case Rep. 2013;2013 DOI: 10.1136/bcr-2012-008185.
Gort L, Coll MJ. [Diagnosis, biomarkers and biochemical alterations in Gaucher’s disease]. Med Clin (Barc). 2011;137 Suppl 1:12-6 DOI: 10.1016/S0025- 7753(11)70011-2.
Giraldo P, Roca M. [Therapeutic targets in Gaucher’s disease]. Med Clin (Barc). 2011;137 Suppl 1:46-9 DOI: 10.1016/S0025-7753(11)70017-3.
Aerts JM, Van Breemen MJ, Bussink AP, Ghauharali K, Sprenger R, Boot RG, et al. Biomarkers for lysosomal storage disorders: identification and application as exemplified by chitotriosidase in Gaucher disease. Acta paediatrica. 2008;97:7-14 DOI: 10.1111/j.1651- 2227.2007.00641.x.
Grabowski GA. Advances in Gaucher Disease: Basic and Clinical Perspectives. London: Future Medicine Ltd. 2013 DOI: 10.2217/9781780842011.
Revel-Vilk S, Fuller M, Zimran A. Value of Glucosylsphingosine (Lyso-Gb1) as a Biomarker in Gaucher Disease: A Systematic Literature Review. International journal of molecular sciences. 2020;21(19):7159 DOI: 10.3390/ijms21197159.
Bobillo Lobato J, Jimenez Hidalgo M, Jimenez Jimenez LM. Biomarkers in Lysosomal Storage Diseases. Diseases. 2016;4(4) DOI: 10.3390/diseases4040040.
Michelin K, Wajner A, Bock H, Fachel A, Rosenberg R, Pires RF, et al. Biochemical properties of betaglucosidase in leukocytes from patients and obligated heterozygotes for Gaucher disease carriers. Clin Chim Acta. 2005;362(1-2):101-9 DOI: 10.1016/j. cccn.2005.06.010.
Murugesan V, Chuang WL, Liu J, Lischuk A, Kacena K, Lin H, et al. Glucosylsphingosine is a key biomarker of Gaucher disease. American journal of hematology. 2016;91(11):1082-9 DOI: 10.1002/ajh.24491.
Boot RG, Verhoek M, Langeveld M, Renkema GH, Hollak CE, Weening JJ, et al. CCL18: a urinary marker of Gaucher cell burden in Gaucher patients. Journal of inherited metabolic disease. 2006;29(4):564-71 DOI: 10.1007/s10545-006-0318-8.
Rolfs A, Giese A-K, Grittner U, Mascher D, Elstein D, Zimran A, et al. Glucosylsphingosine is a highly sensitive and specific biomarker for primary diagnostic and follow-up monitoring in Gaucher disease in a non- Jewish, Caucasian cohort of Gaucher disease patients. PloS one. 2013;8(11):e79732 DOI: 10.1371/journal. pone.0079732.
Juárez-Rendón KJ, Lara-Aguilar RA, García-Ortiz JE. 24-bp duplication on CHIT1 gene in Mexican population. Revista Médica Del Instituto Mexicano Del Seguro Social. 2012;50(4):375-7.
Malaguarnera L, Ohazuruike LN, Tsianaka C, Antic T, Di Rosa M, Malaguarnera M. Human chitotriosidase polymorphism is associated with human longevity in Mediterranean nonagenarians and centenarians. Journal of human genetics. 2010;55(1):8-12 DOI: 10.1038/ jhg.2009.111.
Da Silva-Jose TD, Juarez-Rendon KJ, Juarez-Osuna JA, Porras-Dorantes A, Valladares-Salgado A, Cruz M, et al. Dup-24 bp in the CHIT1 Gene in Six Mexican Amerindian Populations. JIMD Rep. 2015;23:123-7 DOI: 10.1007/8904_2015_442.
Lee P, Waalen J, Crain K, Smargon A, Beutler E. Human chitotriosidase polymorphisms G354R and A442V associated with reduced enzyme activity. Blood Cells, Molecules, and Diseases. 2007;39(3):353-60 DOI: 10.1016/j.bcmd.2007.06.013.
Sperb-Ludwig F, Heineck BL, Michelin-Tirelli K, Alegra T, Schwartz IVD. Chitotriosidase on treatmentnaïve patients with Gaucher disease: A genotype vs phenotype study. Clinica Chimica Acta. 2019;492:1-6 DOI: 10.1016/j.cca.2019.01.018.
Giraldo P, Cenarro A, Alfonso P, Pérez-Calvo JI, Rubio- Félix D, Giralt M, et al. Chitotriosidase genotype and plasma activity in patients type 1 Gaucher’s disease and their relatives (carriers and non carriers). haematologica. 2001;86(9):977-84.
Deegan PB, Moran MT, McFarlane I, Schofield JP, Boot RG, Aerts JM, et al. Clinical evaluation of chemokine and enzymatic biomarkers of Gaucher disease. Blood Cells, Molecules, and Diseases. 2005;35(2):259-67 DOI: 10.1016/j.bcmd.2005.05.005.
Cabrera-Salazar MA, O’Rourke E, Henderson N, Wessel H, Barranger JA. Correlation of surrogate markers of Gaucher disease. Implications for long-term follow up of enzyme replacement therapy. Clinica chimica acta. 2004;344(1-2):101-7 DOI: 10.1016/j.cccn.2004.02.018.
Mirzaian M, Wisse P, Ferraz MJ, Gold H, Donker- Koopman WE, Verhoek M, et al. Mass spectrometric quantification of glucosylsphingosine in plasma and urine of type 1 Gaucher patients using an isotope standard. Blood Cells, Molecules, and Diseases. 2015;54(4):307- 14 DOI: 10.1016/j.bcmd.2015.01.006.
Orvisky E, Park JK, LaMarca ME, Ginns EI, Martin BM, Tayebi N, et al. Glucosylsphingosine accumulation in tissues from patients with Gaucher disease: correlation with phenotype and genotype. Molecular genetics and metabolism. 2002;76(4):262-70 DOI: 10.1016/S1096- 7192(02)00117-8.
Elstein D, Mellgard B, Dinh Q, Lan L, Qiu Y, Cozma C, et al. Reductions in glucosylsphingosine (lyso-Gb1) in treatment-naïve and previously treated patients receiving velaglucerase alfa for type 1 Gaucher disease: Data from phase 3 clinical trials. Molecular Genetics and Metabolism. 2017;122(1-2):113-20 DOI: 10.1016/j. ymgme.2017.08.005.
Dekker N, van Dussen L, Hollak CE, Overkleeft H, Scheij S, Ghauharali K, et al. Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response. Blood. 2011;118(16):e118-e27 DOI: 10.1182/ blood-2011-05-352971.
Smid BE, Ferraz MJ, Verhoek M, Mirzaian M, Wisse P, Overkleeft HS, et al. Biochemical response to substrate reduction therapy versus enzyme replacement therapy in Gaucher disease type 1 patients. Orphanet journal of rare diseases. 2016;11(1):28 DOI: 10.1186/s13023-016- 0413-3.
Ferraz MJ, Marques AR, Gaspar P, Mirzaian M, van Roomen C, Ottenhoff R, et al. Lyso-glycosphingolipid abnormalities in different murine models of lysosomal storage disorders. Molecular genetics and metabolism. 2016;117(2):186-93 DOI: 10.1016/j. ymgme.2015.12.006.
Saville JT, McDermott BK, Chin SJ, Fletcher JM, Fuller M. Expanding the clinical utility of glucosylsphingosine for Gaucher disease. Journal of Inherited Metabolic Disease. 2020;43(3):558-63 DOI: 10.1002/jimd.12192.
Giraldo P, de Frutos LL, Cebolla JJ. Biomarker combination is necessary for the assessment of Gaucher disease? Annals of translational medicine. 2018;6(Suppl 1) DOI: 10.21037/atm.2018.10.69.
Stein P, Yang R, Liu J, Pastores GM, Mistry PK. Evaluation of high density lipoprotein as a circulating biomarker of Gaucher disease activity. Journal of inherited metabolic disease. 2011;34(2):429-37 DOI: 10.1007/s10545-010-9271-7.
Pavlova EV, Deegan PB, Tindall J, McFarlane I, Mehta A, Hughes D, et al. Potential biomarkers of osteonecrosis in Gaucher disease. Blood Cells, Molecules, and Diseases. 2011;46(1):27-33 DOI: 10.1016/j.bcmd.2010.10.010.
Vairo F, Sperb-Ludwig F, Wilke M, Michellin-Tirelli K, Netto C, Neto EC, et al. Osteopontin: a potential biomarker of Gaucher disease. Annals of hematology. 2015;94(7):1119-25 DOI: 10.1007/s00277-015-2354-7.
Ljusberg J, Wang Y, Lång P, Norgård M, Dodds R, Hultenby K, et al. Proteolytic excision of a repressive loop domain in tartrate-resistant acid phosphatase by cathepsin K in osteoclasts. Journal of Biological Chemistry. 2005;280(31):28370-81.
Komninaka V, Kolomodi D, Christoulas D, Marinakis T, Papatheodorou A, Repa K, et al. Evaluation of bone involvement in patients with Gaucher disease: a semiquantitative magnetic resonance imaging method (using ROI estimation of bone lesion) as an alternative method to semi‐quantitative methods used so far. European journal of haematology. 2015;95(4):342-51 DOI: 10.1111/ejh.12504.
Aerts JM, Kallemeijn WW, Wegdam W, Ferraz MJ, van Breemen MJ, Dekker N, et al. Biomarkers in the diagnosis of lysosomal storage disorders: proteins, lipids, and inhibodies. Journal of inherited metabolic disease. 2011;34(3):605-19 DOI: 10.1007/s10545-011-9308-6.
Bradley JM, Le Brun NE, Moore GR. Ferritins: furnishing proteins with iron. JBIC Journal of Biological Inorganic Chemistry. 2016;21(1):13-28 DOI: 10.1007/ s00775-016-1336-0.
Mekinian A, Stirnemann J, Belmatoug N, Heraoui D, Fantin B, Fain O, et al. Ferritinemia during type 1 Gaucher disease: mechanisms and progression under treatment. Blood Cells, Molecules, and Diseases. 2012;49(1):53-7.
Koppe T, Doneda D, Siebert M, Paskulin L, Camargo M, Tirelli KM, et al. The prognostic value of the serum ferritin in a southern Brazilian cohort of patients with Gaucher disease. Genetics and molecular biology. 2016;39(1):30-4 DOI: 10.1590/1678-4685.
Ferraro S, Mozzi R, Panteghini M. Revaluating serum ferritin as a marker of body iron stores in the traceability era. Clinical Chemistry and Laboratory Medicine (CCLM). 2012;50(11):1911-6 DOI: 10.1515/cclm-2012- 0129.
Limgala RP, Goker-Alpan O. Effect of Substrate Reduction Therapy in Comparison to Enzyme Replacement Therapy on Immune Aspects and Bone Involvement in Gaucher Disease. Biomolecules. 2020;10(4):526 DOI: 10.3390/biom10040526.
Pedraza CE, Nikolcheva LG, Kaartinen MT, Barralet JE, McKee MD. Osteopontin functions as an opsonin and facilitates phagocytosis by macrophages of hydroxyapatite-coated microspheres: implications for bone wound healing. Bone. 2008;43(4):708-16 DOI: 10.1016/j.bone.2008.06.010.
Drugan C, Drugan TC, Miron N, Grigorescu-Sido P, Naşcu I, Cătană C. Evaluation of neopterin as a biomarker for the monitoring of Gaucher disease patients. Hematology. 2016;21(6):379-86 DOI: 10.1080/10245332.2016.1144336.
Murr C, Winklhofer-Roob BM, Schroecksnadel K, Maritschnegg M, Mangge H, Böhm BO, et al. Inverse association between serum concentrations of neopterin and antioxidants in patients with and without angiographic coronary artery disease. Atherosclerosis. 2009;202(2):543-9.
Fuchs D, Weiss G, Reibnegger G, Wachter H. The role of neopterin as a monitor of cellular immune activation in transplantation, inflammatory, infectious, and malignant diseases. Critical reviews in clinical laboratory sciences. 1992;29(3-4):307-44 DOI: 10.3109/10408369209114604.
Danilov SM, Tikhomirova VE, Metzger R, Naperova IA, Bukina TM, Goker-Alpan O, et al. ACE phenotyping in Gaucher disease. Molecular genetics and metabolism. 2018;123(4):501-10 DOI: 10.1016/j. ymgme.2018.02.007.
Sturrock ED, Anthony CS, Danilov SM. Peptidyldipeptidase A/Angiotensin I-converting enzyme. Handbook of Proteolytic Enzymes: Elsevier; 2013. p. 480-94.
Nascimbeni F, Cassinerio E, Dalla Salda A, Motta I, Bursi S, Donatiello S, et al. Prevalence and predictors of liver fibrosis evaluated by vibration controlled transient elastography in type 1 Gaucher disease. Molecular genetics and metabolism. 2018;125(1-2):64-72 DOI: 10.1016/j.ymgme.2018.08.004.
Delorme G, Saltel F, Bonnelye E, Jurdic P, Machuca‐ Gayet I. Expression and function of semaphorin 7A in bone cells. Biology of the Cell. 2005;97(7):589-97 DOI: 10.1042/BC20040103.
Costa C, Martínez-Sáez E, Gutiérrez-Franco A, Eixarch H, Castro Z, Ortega-Aznar A, et al. Expression of semaphorin 3A, semaphorin 7A and their receptors in multiple sclerosis lesions. Multiple Sclerosis Journal. 2015;21(13):1632-43 DOI: 10.1177/1352458515599848.
Xie J, Wang H. Semaphorin 7A as a potential immune regulator and promising therapeutic target in rheumatoid arthritis. Arthritis research & therapy. 2017;19(1):1-12 DOI: 10.1186/s13075-016-1217-5.
Franco M, Reihani N, Dupuis L, Collec E, Billette de Villemeur T, de Person M, et al. Semaphorin 7A: A novel marker of disease activity in Gaucher disease. American journal of hematology. 2020;95(5):483-91 DOI: 10.1002/ajh.25744.
Watad S, Abu-Saleh N, Yousif A, Agbaria A, Rosenbaum H. The role of high density lipoprotein in type 1 Gaucher disease. Blood Cells, Molecules, and Diseases. 2018;68:43-6 DOI: 10.1016/j.bcmd.2016.11.005.
Von Eckardstein A, Nofer J-R, Assmann G. High density lipoproteins and arteriosclerosis: role of cholesterol efflux and reverse cholesterol transport. Arteriosclerosis, thrombosis, and vascular biology. 2001;21(1):13-27 DOI: 10.1161/01.atv.21.1.13.
Zimmermann A, Grigorescu-Sido P, Rossmann H, Lackner KJ, Drugan C, Al Khzouz C, et al. Dynamic changes of lipid profile in Romanian patients with Gaucher disease type 1 under enzyme replacement therapy: a prospective study. Journal of inherited metabolic disease. 2013;36(3):555-63 DOI: 10.1007/ s10545-012-9529-3.
Costa AG, Cusano NE, Silva BC, Cremers S, Bilezikian JP. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nature Reviews Rheumatology. 2011;7(8):447 DOI: 10.1038/nrrheum.2011.77.
Muñoz-Torres M, García RR. Catepsina K y resorción ósea. Revista Española de Enfermedades Metabólicas Óseas. 2006;15(4):88-9 DOI: 10.1016/S1132- 8460(06)75270-9.
Lobato JB, Parejo PD, Vázquez RJN, Jiménez LMJ. Cathepsin K as a biomarker of bone involvement in type 1 Gaucher disease. Medicina Clínica (English Edition). 2015;145(7):281-7.
Afinogenova Y, Ruan J, Yang R, Kleytman N, Pastores G, Lischuk A, et al. Aberrant progranulin, YKL- 40, cathepsin D and cathepsin S in Gaucher disease. Molecular genetics and metabolism. 2019;128(1-2):62-7 DOI: 10.1016/j.ymgme.2019.07.014.
Mylin AK, Abildgaard N, Johansen JS, Heickendorff L, Kreiner S, Waage A, et al. Serum YKL-40: a new independent prognostic marker for skeletal complications in patients with multiple myeloma. Leukemia & lymphoma. 2015;56(9):2650-9.
Townley RA, Boeve BF, Benarroch EE. Progranulin: functions and neurologic correlations. Neurology. 2018;90(3):118-25 DOI: 10.1212/ WNL.0000000000004840.
Jian J, Chen Y, Liberti R, Fu W, Hu W, Saunders-Pullman R, et al. Chitinase-3-like PROTEIN 1: A Progranulin downstream molecule and potential biomarker for Gaucher disease. EBioMedicine. 2018;28:251-60 DOI: 10.1016/j.ebiom.2018.01.022.
Li B, Castano AP, Hudson TE, Nowlin BT, Lin S-L, Bonventre JV, et al. The melanoma‐associated transmembrane glycoprotein Gpnmb controls trafficking of cellular debris for degradation and is essential for tissue repair. The FASEB Journal. 2010;24(12):4767-81.
Kramer G, Wegdam W, Donker‐Koopman W, Ottenhoff R, Gaspar P, Verhoek M, et al. Elevation of glycoprotein nonmetastatic melanoma protein B in type 1 Gaucher disease patients and mouse models. FEBS Open Bio. 2016;6(9):902-13 DOI: 10.1002/2211-5463.12078.
Murugesan V, Liu J, Yang R, Lin H, Lischuk A, Pastores G, et al. Validating glycoprotein non-metastatic melanoma B (gpNMB, osteoactivin), a new biomarker of Gaucher disease. Blood Cells, Molecules, and Diseases. 2018;68:47-53 DOI: 10.1016/j.bcmd.2016.12.002.
Ługowska A, Hetmańczyk-Sawicka K, Iwanicka- Nowicka R, Fogtman A, Cieśla J, Purzycka-Olewiecka JK, et al. Gene expression profile in patients with Gaucher disease indicates activation of inflammatory processes. Scientific reports. 2019;9(1):1-14 DOI: 10.1038/s41598- 019-42584-1.
Boot RG, Verhoek M, De Fost M, Hollak CE, Maas M, Bleijlevens B, et al. Marked elevation of the chemokine CCL18/PARC in Gaucher disease: a novel surrogate marker for assessing therapeutic intervention. Blood. 2004;103(1):33-9 DOI: 10.1182/blood-2003-05-1612.
Medrano-Engay B, Irun P, Gervas-Arruga J, Andrade- Campos M, Andreu V, Alfonso P, et al. Iron homeostasis and infIammatory biomarker analysis in patients with type 1 Gaucher disease. Blood Cells, Molecules, and Diseases. 2014;53(4):171-5 DOI: 10.1016/j. bcmd.2014.07.007.
Polo G, Burlina AP, Kolamunnage TB, Zampieri M, Dionisi-Vici C, Strisciuglio P, et al. Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS/MS. Clinical Chemistry and Laboratory Medicine (CCLM). 2017;55(3):403-14.
Gras‐Colomer E, Martínez‐Gómez MA, Climente‐Martí M, Fernandez‐Zarzoso M, Almela‐Tejedo M, Giner‐ Galvañ V, et al. Relationship between glucocerebrosidase activity and clinical response to enzyme replacement therapy in patients with Gaucher Disease type I. Basic & clinical pharmacology & toxicology. 2018;123(1):65-71 DOI: 10.1111/bcpt.12977.
Bodamer OA, Hung C. Laboratory and genetic evaluation of Gaucher disease. Wiener Medizinische Wochenschrift. 2010;160(23-24):600-4 DOI: 10.1007/ s10354-010-0814-1.
Franco-Ornelas S. Mexican consensus on Gaucher’s disease. Revista Médica del Instituto Mexicano del Seguro Social. 2010;48(2):167-86.
Carbajal-Rodríguez L, Gómez-González MF, Rodríguez-Herrera R, Zarco-Román J, Mora-Tiscareño MA. Terapia de reemplazo enzimático en una paciente con enfermedad de Gaucher tipo III. Acta Pediátrica de México. 2012;33(1):9-19.
Pompa-Garza MT, González-Villarreal MG, Cedillode la Cerda JL. Experiencia en el manejo de pacientes pediátricos con enfermedad de Gaucher. Revista Médica del Instituto Mexicano del Seguro Social. 2010;48(6):653-6.
Fraile PQ, Hernández EM, García-Silva MT. Evolución clínica de dos pacientes pediátricos con enfermedad de Gaucher en tratamiento enzimático durante 9 años. Medicina Clínica. 2011;137:43-5.
Navarrete-Martínez JI, Limón-Rojas AE, de Jesús Gaytán-García M, Reyna-Figueroa J, Wakida-Kusunoki G, del Rocío Delgado-Calvillo M, et al. Newborn screening for six lysosomal storage disorders in a cohort of Mexican patients: three-year findings from a screening program in a closed Mexican health system. Molecular Genetics and Metabolism. 2017;121(1):16-21 DOI: 10.1016/j.ymgme.2017.03.001.
Hassan S, Sidransky E, Tayebi N. The role of epigenetics in lysosomal storage disorders: uncharted territory. Molecular Genetics and Metabolism. 2017;122(3):10-8 DOI: 10.1016/j.ymgme.2017.07.012.