2020, Número 2
<< Anterior Siguiente >>
Rev Cubana Hematol Inmunol Hemoter 2020; 36 (2)
Características citomorfológicas de las alteraciones plaquetarias cuantitativas y su relación con otras alteraciones celulares
Hernández RY, Soler NG, Simón PA
Idioma: Español
Referencias bibliográficas: 61
Paginas: 1-21
Archivo PDF: 375.23 Kb.
RESUMEN
Introducción:
Las alteraciones cuantitativas de plaquetas son producidas por el incremento o disminución de los conteos globales de plaquetas. El incremento o trombocitosis se produce por redistribución o aumento de la producción medular; la disminución puede ser el resultado de una reducción de la producción, redistribución o acortamiento de la sobrevida de las plaquetas en circulación.
Objetivo:
Describir los hallazgos citomorfológicos más importantes en las alteraciones cuantitativas de plaquetas.
Métodos:
Se realizó una revisión de la literatura, en inglés y español, en la base de datos PubMed y el motor de búsqueda Google Académico de artículos publicados en los últimos 10 años. Se hizo un análisis y resumen de la bibliografía revisada.
Análisis y síntesis de la información:
Las alteraciones cuantitativas de plaquetas se caracterizan por variaciones en el número y morfología de estas células. Estas se asocian a causas congénitas o adquiridas, en la que la detallada anamnesis de los pacientes es un elemento importante en el diagnóstico. En la trombocitosis se debe diferenciar una trombocitosis reactiva de una enfermedad medular primaria; mientras que en la trombocitopenia se debe considerar el origen étnico de los pacientes y la morfología de los leucocitos. Son numerosas las causas hereditarias de trombocitopenia con anomalías morfológicas de plaquetas y granulocitos.
Conclusiones:
Las alteraciones cuantitativas de plaquetas son un amplio número de entidades con semejanzas y diferencias en cuanto a presentación y manifestaciones clínicas. Los exámenes de laboratorio constituyen una herramienta importante en el diagnóstico, pronóstico y el seguimiento de los pacientes afectados.
REFERENCIAS (EN ESTE ARTÍCULO)
Latagliata R, Montanaro M, Cedrone M, Di Veroli A, Spirito F, Santoro C, et al. High platelet count at diagnosis is a protective factor forthrombosis in patients with essential thrombocythemia. Thromb Res. 2017;156:168-71. Doi:10.1016/j.thromres.2017.06.023
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405.
Sillers L, Van Slambrouck C, Lapping-Carr G. Neonatal Thrombocytopenia: Etiology and Diagnosis. Pediatr Ann. 2015;44(7):e175-80.
Engel PJ, Johnson H, Baughman RP, Richards AI. High-output heart failure associated with anagrelide therapy for essential thrombocytosis. Ann Intern Med. 2005;143:311-3.
Soler-Noda G, Aquino-Rojas S, Bencomo-Hernández A, Sosa-González LC. Trombocitopenias neonatales en La Habana: incidencia y características de la enfermedad. Rev Cub Hematol Inmunol Hemoter. 2017;33(3):84-94.
Chung NG, Kim M. Current insights into inherited bone marrow failure syndromes. Korean J Pediatr. 2014;57(8):337-44.
Tsang HC, Bussel JB, Mathew S, Yen-Chun L, AImahiyerobo A, Orazi A, et al. Bone marrow morphology and disease progression in congenital thrombocytopenia: a detailed clinicopathologic and genetic study of eight cases. Mod Pathol. 2017;30:486-98.
Rumi E, Passamonti F, Della Porta MG, Elena C, Arcaini L, Vanelli L, et al. Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. J Clin Oncol. 2007;25(35):5630-5.
Mead AJ, Rugless MJ, Jacobsen SE, Schuh A. Germline JAK2 mutation in a family with hereditary thrombocytosis. N Engl J Med. 2012;366(10):967-9.
Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124(16):2507-13.
Hasle H. Incidence of essential thrombocythaemia in children. Br J Haematol. 2000;110(3):751.
Haider M, Gangat N, Lasho T, Abou Hussein AK, Elala YC, Hanson C, et al. Validation of the revised international prognostic score of thrombosis for essential thrombocythemia (IPSET-thrombosis) in 585 Mayo clinic patients. Am J Hematol. 2016;91(4):390-4.
Barbui T, Finazzi G, Carobbio A, Thiele J, Passamonti F, Rumi E, et al. Development and validation of an International Prognostic Score of Thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood. 2012;120(26):5128-33.
Tefferi A. Myeloproliferative neoplasms: A decade of discoveries and treatment advances. Am J Hematol. 2016;91(1):50-8.
Kleman A, Singavi AK, Michaelis LC. Current Challenges in the Management of Essential Thrombocythemia. Clin Adv Hematol Oncol. 2017;15(10):773-83.
Hoffbrand AV, Catovsky D, Tuddenham EGD eds. Postgraduate Haematology. 5th ed. Oxford: Blackwell Publishing; 2006.
Gianelli U, Iurlo A, Vener C, Moro A, Fermo E, Bianchi P et al. The significance of bone marrow biopsy and JAK2V617F mutation in the differential diagnosis between the "early" prepolycythemic phase of polycythemia vera and essential thrombocythemia. Am J Clin Path. 2008;130(3):336-42.
Mela Osorio MJ, Ferrari L, Goette NP, Gutierrez MI, Glembotsky AC, Maldonado AC, et al. Long-term follow-up of essential thrombocythemiapatients treated with anagrelide: subgroup analysis according to JAK2/CALR/MPL mutational status. Eur J Haematol. 2016;96:435-42.
Lussana F, Carobbio A, Salmoiraghi S, Guglielmelli P4, Vannucchi AM4, Bottazzi B, et al. Driver mutations (JAK2V617F,MPLW515L/K or CALR), pentraxin-3 and C-reactive protein in essential thrombocythemia and polycythemia vera. J Hematol Oncol. 2017;10(1):54.
Randi ML, Bertozzi I, Rumi E, Elena C, Finazzi G, Vianelli N, et al. Pregnancy complications predict thrombotic events in young women with essential thrombocythemia. Am J Hematol. 2014;89(3):306-9.
Kiladjian JJ, Elkassar N, Hetet G, Balitrand N, Conejero C, Girauduer S, et al. Analysis of JAK2 mutation is essential thrombocythaemia (ET) patients with monoclonal and polyclonal X-chromosome inactivation patterns (XCIPs). Blood. 2005;106:732a.
Kiladjian JJ, Giraudier S, Cassinat B. Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone. Leukemia. 2016;30(4):776-81.
Loghavi S, Pemmaraju N, Kanagal-Shamanna R, Mehrotra M, Medeiros L, Luthra J, et al. Insights from response to tyrosine kinase inhibitor therapy in a rare myeloproliferative neoplasm with CALR mutation and BCR-ABL1. Blood. 2015;125(21):33603.
Bonzheim I, Mankel B, Klapthor P, Schmidt J, Hinrichsen T, Wachter O, et al. CALR-mutated essential thrombocythemia evolving to chronic myeloid leukemia with coexistent CALR mutation and BCR-ABL translocation. Blood. 2015;125(14):2309-11.
Finazzi G, Carobbio A, Guglielmelli P, Cavalloni C, Salmoiraghi S, Vannucchi AM, et al. Calreticulin mutation does not modify the IPSET score for predicting the riskof thrombosis among 1150 patients with essential thrombocythemia. Blood. 2014;124(16):2611-2.
Wick M, Pinggera W, Lehmann P. Clinical aspects and laboratory iron metabolism, anaemias. Novel concepts in the anemias of malignancies and renal and rheumatoid diseases. 5th, enlarged ed. New York: Springer Wien; 2013.
Pecci A, Ragab I, Bozzi V, De Rocco D, BarozziS, Giangregorio T, et al. Thrombopoietin mutation in congenital amegakaryocytic thrombocytopenia treatable with romiplostim. EMBO Mol Med. 2017;10(1):63-75.
Niihori T, Ouchi-Uchiyama M, Sasahara Y, Kaneko T, Hashii Y, Irie M, et al. Mutations in MECOM, Encoding Oncoprotein EVI1, Cause RadioulnarSynostosis with Amegakaryocytic Thrombocytopenia. Am J Hum Genet. 2015;97(6):848-54.
Nalepa G, Clapp DW. Fanconianaemia and cancer: an intricate relationship. Nat Rev Cancer. 2018;18(3):168-85.
Kelmenson DA, Hanley M. DyskeratosisCongenita. N Engl J Med. 2017;376:1460.
Morris EC, Fox T, Chakraverty R, Tendeiro R, Snell K, Rivat C, et al. Gene therapy for Wiskott-Aldrich syndrome in a severely affected adult. Blood. 2017:blood-2017-04-777136.
Sivapalaratnam S, Westbury S, Stephens J, Greene DJ, Downes K, Kelly A, et al. Rare variants in GP1BB are responsible for autosomal dominant macrothrombocytopenia. Blood. 2017;129(4):520-4.
Kaymak Cihan Meriç, Bolat F, Onay H, Sari A, Ünver Korgali E, Aslan S, et al. A Severe Congenital Neutropenia Type 4 Case (G6PC3 Mutation) Presented With Large Platelets in the Peripheral Smear. J Pediatr Hematol/Oncol. 2016;38(4):324-8.
Al Madani H, Nazer MS, Alotibi WH. Bernard-Soulier Syndrome; Case Study. Int J Health Sci. 2016;4(1):156-9.
Thakral B, Rojanapremsuk T, Saluja K, Eldibany M. Misdiagnosed MYH9 related inherited macrothrombocytopenia with an inadvertent splenectomy. Pathology. 2015;47(4):377-9.
Antonini TN, Van Horn Kerne V, Axelrad ME, Karaviti LP, Schwartz DD. Neurocognitive profile of a young adolescent with DK phocomelia/von Voss phocomelia/von Voss Cherstvoy syndrome. Am J Med Genet A. 2015;167(7):1632-6.
Mateos MK, Barbaric D, Byatt SA, Sutton R, Marshall GM. Down syndrome and leukemia: insights into leukemogenesis and translational targets. Transl Pediatr. 2015;4:76-92.
Alwan S, Chambers CD. Identifying Human Teratogens: An Update. J Pediatr Genet. 2015;4(2):39-41.
Perez J, Patnaik MM. Delayed diagnosis of MYH-9-related disorder and the role of light microscopy in congenital macrothrombocytopenias. Blood. 2016 Apr;127(15):1940.
Pluthero FG, Di Paola J, Carcao MD, Kahr WHA. NBEAL2 mutations and bleeding in patients with gray platelet syndrome. Platelets. 2018;29(6):632-5.
Goeller JK, Veneziano G, Tobias JD. Perioperative management of a patient with Jacobsen síndrome. Pediatric Anesth Crit Care J. 2015;3(1):26-31.
Songdej N, Rao AK. Hematopoietic transcription factor mutations and inherited platelet dysfunction. F1000Prime Rep. 2015;7:66.
Sharma D, Shastri S, Pandita A, Sharma P. Congenital thrombotic thrombocytopenic purpura: Upshaw-Schulman syndrome: a cause of neonatal death and review of literature. J Matern Fetal Neonatal Med. 2016;29(12):1977-9.
Melazzini F, Zaninetti C, Balduini CL. Bleeding is not the main clinical issue in many patients with inherited thrombocytopaenias. Haemophilia. 2017;23:673-81.
Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. Hematology Am Soc Hematol Educ Program. 2017 Dec 8;2017(1):385-399. doi: 10.1182/asheducation-2017.1.385.
Mattalon SM, Arnoni C, Céspedes R, Nonaka C, Trucco Boggione C, Luján MEl, et al. Clinical Significance of an Alloantibody against the Kell Blood Group Glycoprotein. Transfus Med Hemother. 2017;44:53-7.
Favier R, Raslova H. Progress in understanding the diagnosis and molecular genetics of macrothrombocytopenias. Br J Haematol. 2015;170:626-39.
Winkelhorst D, Oepkes D, Lopriore E. Fetal and neonatal alloimmune thrombocytopenia: evidence based antenatal and postnatal management strategies. Expert Rev Hematol. 2017;10(8):729-37.
Ruhoy SM, Yates A. Macrothrombocytopenia With Döhle Body-Like Granulocyte Inclusions: A Case Report of May-Hegglin Anomaly in a 33-Year-Old White Woman With an Update on the Molecular Findings of MYH9-Related Disease. Lab Med. 2016;47(3):246-50.
Aboud N, Depré F, Salama A. Is Autoimmune Thrombocytopenia Itself the Primary Disease in the Presence of Second Diseases Data from a Long-Term Observation. Transfus Med Hemother. 2017;44(1):23-8.
Nabhani S, Ginzel S, Miskin H, Revel-Vilk S, Harlev D, Fleckenstein B, et al. Deregulation of Fas ligand expression as a novel cause of autoimmune lymphoproliferative syndrome-like disease. Haematologica. 2015;100(9):1189-98.
Mauro FR, Trastulli F, Alessandri C, Valesini G, Giovannetti G, Riemma C, et al. Clinical relevance of silent red blood cell autoantibodies. Haematologica. 2017;102(12):e473-5.
Terrell DR, Beebe LA, Neas BR, Vesely SK, Segal JB, George JN. Prevalence of primary immune thrombocytopenia in Oklahoma. Am J Hematol. 2012;87:848-52.
Neunert C, Noroozi N, Norman G, Buchanan GR, Goy J, Nazi I, et al. Severe bleeding events in adults and children with primary immune thrombocytopenia: a systematic review. J Thromb Haemost. 2015;13(3):457-64.
Bhatt NS, Bhatt P, Donda K, Dapaah-Siakwan F, Chaudhari R, Gandhi V, et al. Temporal trends of splenectomy in pediatric hospitalizations with immune thrombocytopenia. Pediatr Blood Cancer. 2018;65(7):e27072.
Fayyaz A, Igoe A, Kurien BT, Danda D, James JA, Stafford HA, et al. Haematologicalmanifestations of lupus. Lupus Sci Med. 2015;2:e000078.
Sheema K, Ikramdin U, Arshi N, Farah N, Imran S. Role of Helicobacter pylori Eradication Therapy on Platelet Recovery in Chronic Immune Thrombocytopenic Purpura. Gastroenterol Res Pract. 2017;2017:9529752. doi: 10.1155/2017/9529752.
Perricone C, Ceccarelli F, Nesher G, Borella E, Odeh Q, Conti F, et al. Immune thrombocytopenic purpura (ITP) associated with vaccinations: a review of reported cases. Immunol Res. 2014;60:226-35.
George JN. The remarkable diversity of thrombotic thrombocytopenic purpura: a perspective. Blood Adv. 2018;2(12):1510-6.
Toussaint-Hacquard M, Coppo P, Soudant M, Chevreux L, Mathieu-Nafissi S, Lecompte T, et al. Type of plasma preparation used for plasma exchange and clinical outcome of adult patients with acquired idiopathic thrombotic thrombocytopenic purpura: a French retrospective multicenter cohort study. Transfusion.2015;55:2445-51.
Alwan F, Vendramin C, Vanhoorelbeke K, Langley K, McDonald V, Austin S, et al. Presenting ADAMTS13 antibody and antigen levels predict prognosis in immune-mediated thrombotic thrombocytopenic purpura. Blood. 2017 Jul 27;130(4):466-471. doi: 10.1182/blood-2016-12-758656.