2018, Número 25
<< Anterior Siguiente >>
Inv Ed Med 2018; 7 (25)
Introducción a los modelos de ecuaciones estructurales
Manzano PAP
Idioma: Español
Referencias bibliográficas: 30
Paginas: 67-72
Archivo PDF: 209.36 Kb.
RESUMEN
Los modelos de ecuaciones estructurales (SEM) son una herramienta estadística
multivariada que permite estudiar la relación que hay entre variables latentes y observadas.
Este artículo tiene el propósito de introducir, de forma sencilla y no muy teórica, a los SEM.
Se describen los tipos de modelos, su representación gráfica, su identificabilidad, las técnicas
de estimación de parámetros y la valoración de su ajuste. Se incluye además un ejemplo para
ilustrar esta metodología estadística.
REFERENCIAS (EN ESTE ARTÍCULO)
Westland JC. Structural equation models: From paths to networks. Springer. 2015:175.
Jöreskog K, Sörbom D. LISREL 9.3. Scientific Software International. 2008.
Lawley DN. The estimation of factor loadings by the method ofmaximumlikelihood.ProceedingsoftheRoyalSocietyEdin- burgh.1940;60:64---82.
Jöreskog KG. A general approach to confirmatory maximum likelihood factor analysis. Psychometrika. 1969;34:183---202.
Stata Corp. Stata: Release 13. Statistical Software College Station; 2013.
Rosseel Y. Lavaan: An R package for structural equation modeling. Journal of Statistical Software. 2012;48:1---36.
Bollen KA. Structural equations with latent variables. New York: Wiley; 1989.
Bartholomew DJ, Steele F, Galbraith J, Moustaki I. Analysis of multivariate social science data. 2nd ed. Chapman & Hall; 2008.
Stage FK, Cartyer HC, Nora A. Path analysis: An introduction and analysisofadecadeofresearch.JournalofEducationResearch. 2004;98:5---12.
Keith TZ. Multiple regression and beyond: An introduction to multiple regression and structural equation modeling. 2nd ed. New York: Taylor & Francis; 2015.
Mulaik SA. Foundations of factor analysis. 2nd ed. Boca Raton: Chapman & Hall/CRC; 2009.
Loehlin JC, Beaujean AA. Latent variable models. An introduction to factor, path and structural equation analysis. 5th ed. New York: Taylor & Francis; 2017.
Nachtigall C, Kroehne U, Funke F, Steyer R. (Why) should we use SEM? Pros and cons of structural equation modeling. Methods of Psychological Research Online. 2003;8:1---22.
Bollen KA. Total direct, and indirect effects in structural equation models. Sociological Methodology. 1987;17:37---69.
Bollen KA, Davis WR. Two rules of identification for structural equation models. Structural Equation Modeling: A Multidisciplinary Journal. 2009;16:523---36.
Kline RB. Principles and practice of structural equation modeling. 4th ed. New York: The Gildford Press; 2015.
Bollen KA, Long JS. Testing structural equation models. California: SAGE; 1993.
Muthén B. En: Bollen KA, Long JS, editores. Goodness of fit with categorical and other nonnormal variables. Testing structural equation models. California: SAGE; 1993. p. 205-234.
Bentler PM, Yuan K. Structural equation modeling with small samples: Test statistics. Multivariate Behavioral Research. 1999;34:181---97.
Browne MW. Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology. 1984;37:62---83.
Muthén B. Latent variable structural equation modeling with categorical data. Journal of Econometrics. 1983;22:43---65.
Schumacker RE, Lomax RG. A begginer´s guide to structural equation modeling. 2nd ed. Mahwah, NJ: Lawrence Erlbaum Associates; 2004.
Steiger JH. Point estimation, hypothesis testing and inter-val estimation approach. Multivariate Behavioral Research. 1990;25:173---80.
Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternati-ves. Structural Equation Modeling: A Multidisciplinary Journal. 1999;6:1---55.
Kim SS, Kaplowitz S, Johnston MV. The effects of physician empathy and patient satisfaction and compliance. Evaluation & Health Professions. 2004;27:237---51.
Mehrabian A, Epstein N. A measure of emotional empathy. Jour- nal of Personality. 1972;40:525---43.
Olson JK. Relationships between nurse-expressed empathy, patient-perceived empathy and patient distress. Image: The Journal of Nursing Scholarship. 1995;27:317---22.
Squier R. A model of empathic understanding and adherence to treatment regimens in practitioner-patient relationships.Social Science & Medicine. 1990;30:325---39.
Hermida R. The problem of allowing correlated errors in structural equation modeling: concerns and considerations. Computational Methods in Social Sciences. 2015;3:1---17.
Farrell AD. Structural equation modeling with longitudinal data: Strategies for examining group differences and recipro-cal relationships. Journal of Consulting and Clinical Psychology. 1994;62:477---87.