2021, Number 1
<< Back Next >>
Rev Latin Infect Pediatr 2021; 34 (1)
Bacteremia by Pseudomonas aeruginosa in children: antimicrobial resistance profile
Riojas HMP, Pérez CS, De PAG, Vaquera ADN, Castillo BJI, Mascareñas SAH, De OCME
Language: Spanish
References: 18
Page: 34-40
PDF size: 230.08 Kb.
ABSTRACT
Introduction: Pseudomonas aeruginosa is considered an opportunistic pathogen responsible of serious nosocomial infections. The increase in antibiotic resistance and, especially, its resistance to carbapenems, have placed this microorganism as a critical priority by the WHO for the emergence of new antimicrobial therapies.
Objectives: To describe the epidemiology of antibiotic resistance by Pseudomonas aeruginosa in bloodstream infections in a pediatric population of a third level hospital in Northern of Mexico.
Material and methods: Cross-sectional, retrospective study in pediatric patients with positive blood cultures for Pseudomonas aeruginosa in 2019-2020 period, at the University Hospital "Dr. José Eleuterio González" in Monterrey, Nuevo León. Blood samples were inoculated in the BACTEC system and cultured in conventional media. Microbiological identification was performed with MALDI-TOF and was complemented with biochemical tests in some cases. Antibiotic susceptibility was determined with MALDI-TOF.
Results: A total of 26 isolates were identified in blood cultures of Pseudomonas aeruginosa in the period 2019-2020. Anti-pseudomonas cephalosporins resistance was documented in 19.2%, aminoglycosides (19.2%), extended-espectrum beta lactamases (11.5%), carbapenems (26.9%), quinolones (30.8%), piperacillin-tazobactam (7.7%), and up to 15.4% detection of MDR strains. The rate of bacteremia episodes due to Pseudomonas aeruginosa in this institution is 0.37 cases per 1,000 day of hospital stay.
Conclusions: The high rates of antimicrobial resistance in our hospital reiterates the urgent need to implement strategies for the prevention and control of diseases caused by Pseudomonas aeruginosa in hospital settings, especially in intensive care units and immunocompromised patients.
REFERENCES
Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas genomes: diverse and adaptable. FEMS microbiology reviews. 2011; 35 (4): 652-680. Available in: https://doi.org/10.1111/j.1574-6976.2011.00269.x.
Diggle SP, Whiteley M. Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology. 2020; 166 (1): 30-33. Available in: https://doi.org/10.1099/mic.0.000860.
Strateva T, Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol. 2009; 58 (9): 1133-1148. Available in: https://doi.org/10.1099/jmm.0.009142-0.0
Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J Infect Dis. 2008; 197 (8): 1079-1081. Available in: https://doi.org/10.1086/533452.
Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011; 19 (8): 419-426. Available in: https://doi.org/10.1016/j.tim.2011.04.005.
Centers for Disease Control and Prevention (U.S.). Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention (USA). 2019. Available in: https://doi.org/10.15620/cdc:82532.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18 (3): 268-281. Available in: https://doi.org/10.1111/j.1469-0691.2011.03570.x.
Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB et al. Bad bugs, no drugs: No ESKAPE! an update from the Infectious Diseases Society of America. Clin Infect Dis. 2009; 48 (1): 1-12. Available in: https://doi.org/10.1086/595011.
De Rosa FG, Corcione S, Pagani N, Di Perri G. From ESKAPE to ESCAPE, From KPC to CCC. Clin Infect Dis. 2015; 60 (8): 1289-1290. Available in: https://doi.org/10.1093/cid/ciu1170.
Jenny M. Properties and prevention: a review of Pseudomonas aeruginosa. J Biol Med Res. 2018; 2 (3): 18.
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019; 37 (1): 177-192. Available in: https://doi.org/10.1016/j.biotechadv.2018.11.013
Murray JL, Kwon T, Marcotte EM, Whiteley M. Intrinsic antimicrobial resistance determinants in the Superbug Pseudomonas aeruginosa. MBio, 2015; 6 (6): e01603-15. Available in: https://doi.org/10.1128/mBio.01603-15.
Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ et al. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiology Reviews. 2017; 41 (5): 698-722. Available in: https://doi.org/10.1093/femsre/fux020.
Tacconelli E. (s/f). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 1-7.
Logan LK, Gandra S, Mandal S, Klein EY, Levinson J, Weinstein RA et al. Multidrug- and carbapenem-resistant Pseudomonas aeruginosa in children, United States, 1999-2012. J Pediatric Infect Dis Soc. 2017; 6 (4): 352-359. Available in: https://doi.org/10.1093/jpids/piw064.
Muñoz JG, Corona AMR, Bustamante MEM. (s/f). Estudio multicéntrico de resistencias bacterianas nosocomiales en México. Rev Latin Infect Pediatr. 2017; 30 (2) 68-75.
Hammoudi HD, Ayoub MC. The current burden of carbapenemases: review of significant properties and dissemination among Gram-negative bacteria. Antibiotics. 2020; 9 (4): 186. Available in: https://doi.org/10.3390/antibiotics9040186.
Garza-Ramos U, Barrios H, Reyna-Flores F, Tamayo-Legorreta E, Catalan-Najera JC, Morfin-Otero R et al. Widespread of ESBL- and carbapenemase GES-type genes on carbapenem-resistant Pseudomonas aeruginosa clinical isolates: a multicenter study in Mexican hospitals. Diagn Microbiol Infect Dis. 2015; 81 (2): 135-137. Available in: https://doi.org/10.1016/j.diagmicrobio.2014.09.029.