2021, Number 1
<< Back Next >>
Sal Jal 2021; 8 (1)
Relevancia del uso de nanomateriales utilizados en biosensores para la detección de Tuberculosis
Oviedo-Chávez D, López-Romero W, Flores-Valdez MA
Language: Spanish
References: 35
Page: 41-51
PDF size: 285.67 Kb.
ABSTRACT
Background: A specific and sensitive diagnosis is a
fundamental objective for the control of tuberculosis
(TB), a life-threatening infectious disease in humans.
Technologies employed for biodetection in conjunction
with nanotechnology have enormous potential to
drive TB detection and general management of
clinical diagnosis. A wide range of rapid, sensitive,
specific, and rapid portable nanobiosensors have been
developed based on different signal transduction
principles and with different biomarker detection
capabilities for early stage TB detection.
Objective:
Present a review focused on conventional TB detection
techniques and biosensors and nanobiosensors
technologies.
Materials and methods: Bibliographic
search in PubMed with the keywords “tuberculosis”
and “diagnosis” paying special attention to
publications incorporating nanotechnology.
Results:
Nanobiosensors produce the results that are sought
and fulfill the characteristics established in the
objective of an accurate diagnosis of TB and not
and not only based on detection of immunological
memory.
Conclusions: The combination of biosensors
with a nanotechnology platform has allowed the
development of diagnostic techniques that offer a
range of proposals to classify as point-of-care (POC)
devices and be used in marginalized areas highly
affected by TB.
REFERENCES
Acharya, B., Acharya, A., Gautam, S., Ghimire, S. P., Mishra, G., Parajuli, N., & Sapkota, B. (2020). Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Molecular Biology Reports. doi. org/10.1007/s11033-020-05413-7
Akbarzadeh, A., Samiei, M., & Davaran, S. (2012). Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters, 7(1), 144. doi:10.1186/1556-276x-7-144
Alcaide Megías, J., Altet Gómez, M. N., & Canela I Soler, J. (2000). Epidemiología de la tuberculosis. Anales Españoles de Pediatría, 53(5), 449–457. https://doi.org/10.1016/s1695-4033(00)78628-0
Bai, L., Chen, Y., Liu, X., Zhou, J., Cao, J., Hou, L., & Guo, S. (2019). Ultrasensitive electrochemical detection of Mycobacterium tuberculosis IS6110 fragment using gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet as signal tags. Analytica Chimica Acta. doi:10.1016/j. aca.2019.06.043
Bhusal, N., Shrestha, S., Pote, N., & Alocilja, E. (2018). Nanoparticle-Based Biosensing of Tuberculosis, an Aff ordable and Practical Alternative to Current Methods. Biosensors, 9(1),1. doi:10.3390/bios9010001
CDC. (2016). Factores de riesgo de la tuberculosis | Datos básicos sobre la tuberculosis | TB | CDC. Retrieved April 20, 2020, from https://www.cdc.gov/tb/esp/topic/basics/risk.htm
Chan, K. F., Lim, H. N., Shams, N., Jayabal, S., Pandikumar, A., & Huang, N. M. (2016). Fabrication of graphene/gold-modifi ed screen-printed electrode for detection of carcinoembryonic antigen. Materials Science and Engineering: C, 58, 666–674. doi:10.1016/j.msec.2015.09.010
Chen, M., Hou, C., Huo, D., Bao, J., Fa, H., & Shen, C. (2016). An electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles for human multidrug resistance gene detection. Biosensors and Bioelectronics, 85, 684–691. doi:10.1016/j.bios.2016.05.051
Chen, Y., Liu, X., Guo, S., Cao, J., Zhou, J., Zuo, J., & Bai, L. (2019). A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C60NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEIfunctionalized metal-organic framework. Biomaterials, 216, 119253. doi:10.1016/j.biomaterials.2019.119253
Das, M., Dhand, C., Sumana, G., Srivastava, A. K., Vijayan, N., Nagarajan, R., & Malhotra, B. D. (2011). Zirconia graft ed carbon nanotubes based biosensor for M. Tuberculosis detection. Applied Physics Letters, 99(14), 143702. doi:10.1063/1.3645618
Flores, M. A., López, W., & Aceves, M. de J. (2018). El diagnóstico oportuno de tuberculosis en personas diabéticas: ¿es posible? | México es ciencia - El Sol de México. Retrieved February 10, 2020, from https://www.elsoldemexico.com.mx/analisis/eldiagnostico- oportuno-de-tuberculosis-en-personas-diabeticases- posible-mexico-es-ciencia-1678964.html
Flores, M. A. (2018). Cómo mejorar diagnóstico de tuberculosis - Conacyt - | La Crónica de Hoy. Retrieved February 10, 2020, from http://www.cronica.com.mx/notas/2018/1071912.html
Flores, M. A. (2017). ¿Cómo han evolucionado los métodos para diagnosticar tuberculosis latente? – Conacyt – |La Crónica de Hoy. Retrieved February 10, 2020, from http://www.cronica.com. mx/notas/2017/1048841.html
González-Guerrero, A. B., Maldonado, J., Herranz, S., & Lechuga, L. M. (2016). Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics. Analytical Methods, 8(48), 8380–8394. doi:10.1039/c6ay02972h
Gordillo-Marroquín, C., Gómez-Velasco, A., Sánchez-Pérez, H., Pryg, K., Shinners, J., Murray, N., … Alocilja, E. (2018). Magnetic Nanoparticle-Based Biosensing Assay Quantitatively Enhances Acid-Fast Bacilli Count in Paucibacillary Pulmonary Tuberculosis. Biosensors, 8(4), 128. doi:10.3390/bios8040128
Gupta, S., & Kakkar, V. (2018). Recent technological advancements in tuberculosis diagnostics – A review. Biosensors and Bioelectronics, 115, 14–29. doi:10.1016/j.bios.2018.05.017
Gupta-Wright, A. & Lawn, S. D. (2015) Advances in the Diagnosis of HIV-Associated Tuberculosis. EMJ Respi, 3(1), 60-70. Retrieved from : http://researchonline.lshtm.ac.uk/id/ eprint/2235966/
Hongler, J., Musaazi, J., Ledergerber, B., Eberhard, N., Sekaggya- Wiltshire, C., Keller, P., … Castelnuovo, B. (2018). Comparison of Löwenstein-Jensen and BACTEC MGIT 960 culture for Mycobacterium tuberculosis in people living with HIV. HIV Medicine. doi:10.1111/hiv.12635
Kik, S. V., Denkinger, C. M., Chedore, P., & Pai, M. (2014). Replacing smear microscopy for the diagnosis of tuberculosis: what is the market potential? European Respiratory Journal, 43(6), 1793–1796. doi:10.1183/09031936.00217313
Kim, E. J., Kim, E. B., Lee, S. W., Cheon, S. A., Kim, H.-J., Lee, J., … Park, T. J. (2017). An easy and sensitive sandwich assay for detection of Mycobacterium tuberculosis Ag85B antigen using quantum dots and gold nanorods. Biosensors and Bioelectronics, 87, 150–156. doi:10.1016/j.bios.2016.08.034
Koo, H. C., Park, Y. H., Ahn, J., Waters, W. R., Palmer, M. V., Hamilton, M. J., … Davis, W. C. (2005). Use of rMPB70 Protein and ESAT-6 Peptide as Antigens for Comparison of the Enzyme-Linked Immunosorbent, Immunochromatographic, and Latex Bead Agglutination Assays for Serodiagnosis of Bovine Tuberculosis. Journal of Clinical Microbiology, 43(9), 4498–4506. doi:10.1128/jcm.43.9.4498-4506.2005
Li, Z., Li, X., Zong, Y., Tan, G., Sun, Y., Lan, Y., … Zheng, X. (2017). Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe 3 O 4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon, 115, 493–502. doi:10.1016/j.carbon.2017.01.036
López-Romero, W., Flores-Valdez, M. & Camacho-Villegas, T. (2019). Métodos actuales empleados para el diagnóstico de tuberculosis y su efi cacia en diversos entornos clínicos. Salud Jalisco, 6(3), 170–180.
Miodek, A., Mejri, N., Gomgnimbou, M., Sola, C., & Korri- Youssoufi , H. (2015). E-DNA Sensor of Mycobacterium tuberculosis Based on Electrochemical Assembly of Nanomaterials (MWCNTs/PPy/PAMAM). Analytical Chemistry, 87(18), 9257–9264. doi:10.1021/acs.analchem.5b01761
Mohd Azmi, U., Yusof, N., Kusnin, N., Abdullah, J., Suraiya, S., Ong, P., … Mohamad Fathil, M. (2018). Sandwich Electrochemical Immunosensor for Early Detection of Tuberculosis Based on Graphene/Polyaniline-Modifi ed Screen-Printed Gold Electrode. Sensors, 18(11), 3926. doi:10.3390/s18113926
Mukundan, H., Price, D. N., Goertz, M., Parthasarathi, R., Montaño, G. A., Kumar, S., … Swanson, B. I. (2012). Understanding the interaction of Lipoarabinomannan with membrane mimetic architectures. Tuberculosis, 92(1), 38–47. doi:10.1016/j.tube.2011.09.006
Mulpur, P., Yadavilli, S., Mulpur, P., Kondiparthi, N., Sengupta, B., Rao, A. M., … Kamisetti, V. (2015). Flexible Ag–C60 nanobiosensors based on surface plasmon coupled emission for clinical and forensic applications. Physical Chemistry Chemical Physics, 17(38), 25049–25054. doi:10.1039/c5cp04268b
Perumal, V., Saheed, M. S. M., Mohamed, N. M., Saheed, M. S. M., Murthe, S. S., Gopinath, S. C. B., & Chiu, J.-M. (2018). Gold nanorod embedded novel 3D graphene nanocomposite for selective bio-capture in rapid detection of Mycobacterium tuberculosis. Biosensors and Bioelectronics, 116, 116–122. doi:10.1016/j.bios.2018.05.042
Petruccioli, E., Scriba, T. J., Petrone, L., Hatherill, M., Cirillo, D. M., Joosten, S. A., … Goletti, D. (2016). Correlates of tuberculosis risk: Predictive biomarkers for progression to active tuberculosis. European Respiratory Journal, 48(6), 1751–1763. doi.org/10.1183/13993003.01012-2016
Ramírez-Priego, P., Martens, D., Elamin, A. A., Soetaert, P., Van Roy, W., Vos, R., … Lechuga, L. M. (2018). Label-free and realtime detection of tuberculosis in human urine samples using a nanophotonic point-of-care platform. ACS Sensors. doi:10.1021/ acssensors.8b00393
Secretaria de Salud & Dirección General de Epidemiología. (2020). BoletínEpidemiológico Sistema Nacional de Vigilancia Epidemiológica Sistema Único de Información | Secretaría de Salud | Gobierno | gob.mx. Retrieved April 23, 2020, from https://www.gob.mx/salud/documentos/boletinepidemiologicosistema- nacional-de-vigilancia-epidemiologica-sistema-unicode- informacion-231750
Wei, Q., Xiang, Z., He, J., Wang, G., Li, H., Qian, Z., & Yang, M. (2010). Dumbbell-like Au-Fe3O4 nanoparticles as label for the preparation of electrochemical immunosensors. Biosensors and Bioelectronics, 26(2), 627–631. doi:10.1016/j.bios.2010.07.012
WHO. (2019). Regional and global profi les. Global Status Report of Tuberculosis, 251–258. Retrieved from www.who.int/ tb/data
WHO. (2020). México. Global Status Report of Tuberculosis. Retrieved from www.who.int/tb/data
Zhou, Q., Xue, H., Zhang, Y., Lv, Y., Li, H., Liu, S., … Zhang, Y. (2018). Metal-Free All-Carbon Nanohybrid for Ultrasensitive Photoelectrochemical Immunosensing of alpha-Fetoprotein. ACS Sensors, 3(7), 1385–1391. doi:10.1021/acssensors.8b00307