2021, Number 2
<< Back Next >>
Med Int Mex 2021; 37 (2)
Potassium homeostasis: pathophysiological basis of hereditary tubulopathies
Flores-Delgado A, Hernández-García LR, Beltrán-Reyes P, Silerio-Maqueo G, Ahumada-Ayala M
Language: Spanish
References: 34
Page: 230-243
PDF size: 585.59 Kb.
ABSTRACT
Potassium is the main intracellular cation, its asymmetric distribution between intra
and extracellular space relies mainly on the activity of the Na+/K+ ATPase pump.
Any variation in potassium levels may alter the functionality of excitable tissues,
underlining the importance of these precise regulatory processes. In this article we
review the mechanisms responsible for the regulation of potassium balance with
particular emphasis on the renal regulation of potassium excretion. This is followed
by a brief discussion of the classification, pathophysiology and diagnostic approach
of the most common tubulopathies. The internal balance of potassium refers to the
regulation of the intra/extracellular distribution of this cation, avoiding short term
fluctuations in potassium concentration induced by variations in dietary potassium
content. Internal balance is regulated by insulin and catecholamines acting through
specific intracellular signaling mechanisms. The external balance of potassium are
the predominantly renal mechanisms that adjust potassium excretion to match the
potassium dietary intake. The excretion of potassium by the kidney results from the
balance between potassium reabsorption in the proximal nephron and the complex
potassium secretory mechanisms of the distal nephron. Among the principal regulating
factors of potassium secretion in the distal nephron are the delivery of sodium
and water and aldosterone. Mineralocorticoid activity is regulated intracellularly by
WNK proteins. The electrolyte and acid-base profile as well as the presence of hypo
or hyperkalemia are the cornerstones for the diagnostic approach of hereditary or
acquired tubulopathies. Knowledge of the homeostatic mechanisms that regulate
potassium balance are a guide for the clinician to the correct diagnosis and therapy
of the most common disorders of potassium excretion.
REFERENCES
Gumz ML, Rabinowitz L, Wingo CS. An integrated view of potassium homeostasis. N Engl J Med 2015; 373 (1): 60-72. doi. 10.1056/NEJMra1313341.
Palmer BF. Regulation of Potassium Homeostasis. Clin J Am Soc Nephrol 2014; 10 (6): 1050-60. https://doi. org/10.2215/CJN.08580813.
Palmer BF, Clegg DJ. Physiology and Pathophysiology of Potassium Homeostasis: Core Curriculum 2019. Am J Kidney Dis 2019; 74 (5): 682-695. doi. 10.1053/j.ajkd.2019.03.427.
Nguyen TQ, Maalouf NM, Sakhaee K, Moe OW. Comparison of Insulin action on glucose versus potassium uptake in humans. Clin J Am Soc Nephrol 2011; 6 (7): 1533-1539. doi. 10.2215/CJN.00750111.
Ho K. A critically swift response: Insulin-stimulated potassium and glucose transport in Skeletal Muscle. Clin J Am Soc Nephrol 2011; 6 (7): 1513-16. doi. 10.2215/CJN.04540511.
Clausen T. Hormonal and pharmacological modification of plasma potassium homeostasis. Fundam Clin Pharmacol 2010; 24 (5): 595-605. doi. 10.1111/j.1472- 8206.2010.00859.x.
Williams ME, Gervino EVR, Landsberg L, Young JB, et al. Catecholamine modulation of rapid potassium shifts during exercise. N Engl J Med 1985; 312.13: 823-827.
Aronson PS, Giebisch G. Effects of pH on potassium: New explanations for old observations. J Am Soc Nephrol 2011; 22 (11): 1981-89. doi. 10.1681/ASN.2011040414.
Epstein M, Lifschitz MD. Potassium homeostasis and dyskalemias: The respective roles of renal, extrarenal, and gut sensors in potassium handling. Kidney Int Suppl 2016; 6 (1): 7-15. doi. 10.1016/j.kisu.2016.01.006.
Hunter RW, Bailey MA. Hyperkalemia: Pathophysiology, risk factors and consequences. Nephrol Dial Transplant 2019; 34: III2-III11. doi. 10.1093/ndt/gfz206.
Fahlke C, Fischer M. Physiology and pathophysiology of ClC-K/barttin channels. Front Physiol 2010; 1: 1-12. doi. 10.3389/fphys.2010.00155.
Ares GR, Caceres PS, Ortiz PA. Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol Ren Physiol 2011;301(6). doi. 10.1152/ajprenal.00396.2011.
Castañeda-Bueno M, Gamba G. Mechanisms of sodiumchloride cotransporter modulation by angiotensin II. Curr Opin Nephrol Hypertens 2012; 21 (5): 516-22. doi. 10.1097/ MNH.0b013e32835571a4.
Moreno E, de los Heros P, Plata C, et al. Structurefunction relationships in the renal NaCl Cotransporter (NCC). Vol 83. 1st ed. Elsevier Inc.; 2019. doi. 10.1016/ bs.ctm.2019.01.003.
Bhalla V, Hallows KR. Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol 2008; 19 (10): 1845- 54. doi. 10.1681/ASN.2008020225.
McDonough AA, Youn JH. Potassium homeostasis: The knowns, the unknowns, and the health benefits. Physiology 2017; 32 (2): 100-111. doi. 10.1152/physiol.00022.2016.
Pluznick JL, Sansom SC. BK channels in the kidney: Role in K+ secretion and localization of molecular components. Am J Physiol Ren Physiol 2006; 291 (3). doi. 10.1152/ ajprenal.00118.2006.
Arroyo JP, Ronzaud C, Lagnaz D, Staub O, et al. Aldosterone paradox: Differential regulation of ion transport in distal nephron. Physiology 2011; 26 (2): 115-123. doi. 10.1152/ physiol.00049.2010.
Argaiz ER, Chavez-Canales M, Ostrosky-Frid M, et al. Kidney-specific WNK1 isoform (KS-WNK1) is a potent activator of WNK4 and NCC. Am J Physiol - Ren Physiol 2018; 315 (3): F734-F745. doi. 10.1152/ajprenal.00145.2018.
Berend K. Review of the Diagnostic Evaluation of Normal Anion Gap Metabolic Acidosis. Kidney Dis 2017; 3 (4): 149- 59. doi. 10.1159/000479279.
Berend K, De Vries APJ, Gans ROB. Physiological approach to assessment of acid-base disturbances. N Engl J Med. 2014; 371 (15): 1434-45. doi. 10.1056/NEJMra1003327.
Vallés PG, Batlle D. Hypokalemic Distal Renal Tubular Acidosis. Adv Chronic Kidney Dis 2018; 25 (4): 303-20. doi. 10.1053/j.ackd.2018.05.003.
Santos F, Gil-Peña H, Alvarez-Alvarez S. Renal tubular acidosis. Curr Opin Pediatr 2017; 29 (2): 206-210. doi. 10.1097/ MOP.0000000000000460.
Alexander RT, Bitzan M. Renal Tubular Acidosis. Pediatr Clin North Am 2019; 66 (1): 135-57. doi. 10.1016/j. pcl.2018.08.011.
Riepe FG. Pseudohypoaldosteronism. Horm Resist Hypersensitivity From Genet to Clin Manag 2013; 24: 86-95. doi. 10.1159/000342508.
Fulchiero R, Seo-Mayer P. Bartter syndrome and Gitelman syndrome. Pediatr Clin North Am 2019; 66 (1): 121-34. doi. 10.1016/j.pcl.2018.08.010.
Cunha T da S, Heilberg IP. Bartter syndrome: Causes, diagnosis, and treatment. Int J Nephrol Renovasc Dis 2018; 11: 291-301. doi. 10.2147/IJNRD.S155397.
Nozu K, Yamamura T, Horinouchi T, et al. Inherited saltlosing tubulopathy: An old condition but a new category of tubulopathy. Pediatr Int 2019: 428-437. doi. 10.1111/ ped.14089.
Seys E, Andrini O, Keck M, et al. Clinical and genetic spectrum of Bartter syndrome type 3. J Am Soc Nephrol 2017; 28 (8): 2540-52. doi. 10.1681/ASN.2016101057.
Laghmani K, Beck BB, Yang S Sen, et al. Polyhydramnios, transient antenatal Bartter’s syndrome, and MAGED2 mutations. N Engl J Med 2016; 374 (19): 1853-63. doi. 10.1056/NEJMoa1507629.
Legrand A, Treard C, Roncelin I, et al. Prevalence of novel MAGED2 mutations in antenatal Bartter syndrome. Clin J Am Soc Nephrol 2018; 13 (2): 242-50. doi. 10.2215/ CJN.05670517.
Tetti M, Monticone S, Burrello J, et al. Liddle syndrome: Review of the literature and description of a new case. Int J Mol Sci 2018;19(3). doi. 10.3390/ijms19030812.
Bernard C. Nouvelle fonction du foie: considéré comme organe producteur de matière sucrée chez l’homme et les animaux. J-B Baillière. Published online 1853.
Cannon WW. The Wisdom of the Body. New York, WW Nort & Company, Inc. Published online 1932.