2002, Number 1
<< Back
Bioquimia 2002; 27 (1)
Clinical Chemistry
Bonet RL, Nava AM
Language: Spanish
References: 70
Page: 12-16
PDF size: 110.76 Kb.
ABSTRACT
Reactive oxygen species are formed by incomplete reduction ofmolecular oxygen. They include superoxide anion, hydrogenperoxide and hydroxyl radical. Reactive oxygen species mayinduce different types of cell injury and they have been shownto play an essential role in the mechanisms of several renaldiseases, as post-ischemic and toxic acute renal failure. In thisreview, we try this topic.
REFERENCES
Reiter RJ. The role of neurohormone melatonin as a buffer againstmacromolecular oxidative damage. Neurochem Int 1995; 27 (6): 453-460.
Reiter RJ, Carneiro RC, Oh CS. Melatonin in relation to cellular antioxidativedefense mechanisms. Horm Metab Res 1997; 29 (8): 363-372.
Roskoski R. Bioquímica. 1a ed. México: editorial McGraw Hill; 1998.p.76-79.
Gillham B, Papachristodoulou DK, Thomas JH. Free radicals in health anddisease, in Wills’ Biochemical Basis of Medicine, by Gillham B,Papachristodoulou DK, Thomas JH. 3a ed. Butterworth-Heinemann Edito-rial; !997.p. 343-354.
Rojas-Espinosa O. Bioquímica de la fagocitosis: una breve revisión.Bioquimia 1997; 22 (1): 612-637.
Marsden PA, Bitzan M, Abraham A. Reactive nitrogen and oxygenintermediates and the kidney, in The Kidney, by Brenner BM. 6a ed.Saunders Company; 2000.p. 701-755.
Broche F, Peña M, Céspedes E, García JC, Castillo J. Bases moleculares dela hipertrofia ventricular izquierda. Papel del estrés oxidativo. Rev CubanaInvest Biomed 1997; 16 (2): 84-93.
Diplock AT. Antioxidant nutrients and disease prevention: An overview.Am J Clin Nutr 1991; 53: 1895-1935.
Fridovich I. Superoxide radical and superoxide dismutases. Annu RevBiochem 1995; 64: 97-112.
Luoma JS, Stralin P, Marklund SL. Expression of extracellular SOD and NOsin macrophages and smooth muscle cells in human and rabbitatherosclerotic lesions: Colocalization with epitopes characteristic ofoxidized LDL and peroxynitrile-modified proteins. Arterioscler ThrombVasc Biol 1998; 18: 157-167.
Walker RJ, Duggin GG. Cellular mechanisms of drug nephrotoxicity, in TheKidney: Physiology and Pathophysiology, by Selding D and Giebisch G,Raven Press, New York, 1992: 3571-3595.
Ward RJ, Abiaka C, Peters TJ. Inflammation and tissue injury: the world offree radicals. Journal of Nephrology 1994; 7 (2): 89-96.
Weinberg JM. The cell biology of ischemic renal injury. Kidney Int 1991;39: 476-500.
Liaño F, Pascual J. Fracaso Renal Agudo: Concepto y Epidemiología, enNefrología Clínica, por Hernando A Luis, Editorial Médica Panamericana,Madrid, España, 1997: 481-482.
Liaño F, Pascual J. Insuficiencia Renal Aguda, en Manual de NefrologíaClínica, Diálisis y Trasplante Renal, por Sellarés VL, Torres A, Hernández D,Ayus JC, Harcourt Brace de España SA, Madrid, 1998: 105-141.
Edelstein CL, Ling H, Schrier RW. The nature of renal cell injury. Kidney Int1997; 51: 1341-1351.
Flamenbaum W. Pathophysiology of acute renal failure. Arch Intern Med1973; 131: 911-927.
Beck F, Thurau K, Gstraunthaler G. Pathophysiology and Pathobiochemistryof Acute Renal Failure, in The Kidney: Physiology and Pathophysiology,by Selding D and Grebisch G, Raven Press, New York, 1992: 3157-3179.
Blantz RC. Intrinsic Renal Failure Acute, in The Kidney: Physiology andPathophysiology, by Selding D and Grebisch G, Raven Press, New York,1985: 1863-1882.
Coca A, Sierra A. Mecanismos patogenéticos de la hipertrofia cardíaca enla hipertensión arterial. Med Clin (Barc) 1991; 97: 667-676.
Kucharsk J, Gvozdjkov A, Herichov I, Gvozdjk J. Significance ofmitochondrial Ca2+ transport in ischemic injury and myocardial protection.Bratisl Lek Listy 1994; 95 (9): 391-394.
Flaherty JT. Reperfusion injury. Free Rad Biol Med 1988; 5: 409-419.
Ozden A, Sarioglu A, Demirkan NC, Bilbiham A, Duzcan E. AntothrombinIII reduces renal ischemia-reperfusion injury in rats. Res Exp Med (Berl)2001; 200 (3): 195-203.
Rodríguez-Iturbe B, Pons H, Herrera-Acosta J, Johnson RJ. Role ofimmunocompetent cells in nonimmune renal diseases. Kidney Int 2001;59 (5): 1626-1640.
Andreoli SP, Mc Ateer JA. Reactive oxygen molecule-mediated injury inendothelial and renal tubular epithelial cells in vitro. Kidney Int 1990;38: 785-794.
Jamieson D. Oxygen toxicity and reactive oxygen metabolites in mammals.Free Radic Biol Med 1989; 7: 87-108.
Stogner SW, Payne DK. Oxygen toxicity. Ann Pharmacother 1992; 26:1554-1562.
Baud L, Raymond A. Reactive oxygen species: production and role in thekidney. Am J Physiol 1986; 251: F765-F776.
Ferrari R. Oxygen free radicals at myocardial level: effects of ischemia andreperfusion. Adv Exp Med Biol 1994; 366: 99-111.
Paller MS, Hoidal JR, Ferris TF. Oxygen free radicals in ischemic acute renalfailure in the rat. J Clin Invest 1984; 74: 1156-1164.
McCord JM. Oxygen-derived free radicals in postischemic tissue injury. NEngl J Med 1985; 312: 159-163.
McCoy RN, Ayon MA, Hill KE, Stein JH, Burk RF. Oxidant stress followingrenal ischemia. Kidney Int 1986; 29: 307.
Bailey SM, Reinke LA. Antioxidants and gadolinium chloride attenuatehepatic parenchymal and endothelial cell injury induced by low flowischemia and reperfusion in perfused rat livers. Free Radic Res 2000; 32(6): 497-506.
Gianello P, Saliez A, Bufkens X, Pettinger R, Missoleyn D, Huri S, MalfroyB. EUK-134, a synthetic superoxide dismutase and catalase mimetic,protects rat kidney from ischemia-reperfusion-induced damage.Transplantation 1996; 62 (11): 1664-1666.
Lebeau J, Neviere R, Cotelle N. Beneficial effects of different flavonoids,on functional recovery after ischemia and reperfusion in isolated ratheart. Bioorg Med Chem Lett 2001; 11 (1): 23-27.
Soltys K, Dikdan G, Koneru B. Oxidative stress in fatty livers of obeseZucker rats: Rapid amelioration and improved tolerance to warm ischemiawith tocopherol. Hepatology 2001; 34 (1): 13-18.
Gillham B, Papachristodoulou DK, Thomas JH. Toxic Metals, in Wills’Biochemical Basis of Medicine, by Gillham B, Papachristodoulou DK,Thomas JH. 3a ed. Butterworth-Heinemann Editorial; 1997.p. 358-366.
Klaasen CD. Metales pesados y sus antagonistas, en Las bases farmacológicasde la terapéutica por Godman and Gilman. 9a ed. México: Editorial McGraw Hill; 1996.p. 1761-1766.
Fowler BA. Mechanisms of kidney cell injury from metals. EnvironmentalHealth Perspectives 1992; 100: 57-63.
Weinberg JM, Harding PG, Humes HD. Mitochondrial bioenergetics duringthe initiation of mercuric chloride induced renal injury. I. Directs effectsof in vitro mercuric chloride on renal cortical mitochondrial function. JBiolog Chem 1982; 257 (10): 60-67.
Ambudkar IS, Smith MW, Phelps PC, Regec AL, Trump BF. Extracellular Ca2+-dependent elevation in citosolic Ca2+ potentiates HgCl2-induced renal proximaltubular cell damage. Toxicol Ind Health 1988; 4: 107-123.
Morrison AR, Pascoe N. Modification of renal cortical subcellular membranephospholipids induced by mercuric chloride. Kidney Int 1986; 29: 496-501.
Stein JH, Lifschitz MD, Barnes LD. Currents concepts on thepathophysiology of acute renal failure. Am J Physiol Renal Fluid ElectrolytePhysiol 1978; 234: F171-F181.
Verstrepen WA, Nouwen EJ, Zhu MQ, Ghielli M, DeBroe ME. Time course ofgrowth factor expression in mercuric chloride acute renal failure. NephrolDial Transplant 1995; 10: 1361-1371.
Santos AC, Uyemura SA, Santos NAG, Mingatto FE, Curti C. Hg(II)-inducedrenal cytotoxicity: In vitro and in vivo implications for the bioenergeticand oxidative status of mitochondria. Mol Cell Biochem 1997; 177 (1-2):53-59.
Lund BO, Miller DM, Woods JS. Mercury induced H2O2 production and thelipid peroxidation in vitro in the rat kidney mitochondria. BiochemPharmacol 1991; 42: 5181-5187.
Lund B, Miller DM, Woods JS. Studies on Hg (II)-induced H2O2 formationand oxidative stress in vivo and in vitro in rat kidney mitochondria.Biochem Pharmacol 1993; 45 (10): 2017-2024.
Nath KA, Croatt AJ, Likely S, Behrens TW, Warden D. Renal oxidant injuryand oxidant response induced by mercury. Kidney Int 1996; 50: 1032-1043.
Paller MS. Free radical scavengers in mercuric chloride-induced acuterenal failure in the rat. J Lab Clin Med 1985; 105: 459-463.
Fukino H. Effects of zinc pretreatment on mercuric chloride-induced lipidperoxidation in the rat kidney. Toxicol Appl Pharmacol 1984; 73: 395-401.
Girardi G, Torres MA, Elias MM. The implication of renal glutathione levels inmercuric chloride nephrotoxicity. Toxicology 1989; 58: 187-195.
Gstraunthaler G, Ptaller W, Kotanko P. Glutathione depletion and in vitrolipid peroxidation in mercury or maleate induced acute renal failure.Biochem Pharmacol 1983; 32 (1): 2969-2972.
Nava M, Romero F, Quiroz Y, Parra G, Bonet L, Rodríguez-Iturbe B. Melatoninattenuates acute renal failure and oxidative stress induced by mercuricchloride in rats. Am J Physiol Renal Physiol 2000; 279: F910-F918.
Andersen HR, Anderser O. Effects of dietary alphatocoferol and betacaroteneon lipid peroxidation induced by methyl mercuric chloride in mice.Pharmacol Toxicol 1993; 73: 192-201.
Brady HR, Brenner BM, Clakson MR, Lieberthal W. Acute Renal Failure, inThe Kidney, by Brenner B, Saunders Company, Sixth Edition, 2000:1201-1262.
Craig WA. Once-daily versus multiple daily dosing of aminoglycosides. JChemotherapy 1995; 7: 47.
Hatala R, Dinh T, Cook DJ. Once-daily aminoglycosides dosing in immunocompetentadults-A meta-analysis. Ann Intern Med 1996; 124: 717.
Laurent G, Carlier MB, Rollman B, Van Hoof P, Tulkens P. Mechanisms ofaminoglycoside-induced lysosomal phospholipidosis: in vitro and in vivostudies with gentamicin and amikacin. Biochem Pharmacol 1982; 31:3861-3870.
Olbricht CJ, Fink M, Gutjahr E. Alterations in lysosomal enzymes of theproximal tubule in gentamicin nephrotoxicity. Kidney Int 1991; 39:639-646.
Houghton DC, Widener LL, Mela-Riker L. Mitochondrial (M) respiratoryenzyme integrity during continuous gentamicin (G) treatment: Correlationswith renal function. Kidney Int 1985; 27 (1): 227.
Simmons CF Jr, Bogosky RT, Humes HD. Inhibitory effects of gentamicinon renal mitochondria oxidative phosphorylation. J Pharmacol Exp Ther1980; 214: 709-715.
Williams PD, Holohan PD, Ross CA. Gentamicin nephrotoxicity. I. Acutebiochemical correlates in rats. Toxicol Appl Pharmacol 1981; 61: 234-242.
Sorribas V, Halaihel N, Puttaparthi K, Rogers T, Cronin RE, Alcalde AI et al.Gentamicin causes endocytosis of Na/Pi cotransporter protein (NaPi-2).Kidney Int 2001; 59: 1024-1036.
Walker PD, Das C, Shah SV. Gentamicin induced generation of hydrogenperoxide by renal mitochondria. Kidney Int 1985; 27: 238.
Ozturk HS, Kavutcu M, Kacmaz M, Canbolat O, Durak I. The effects ofgentamicin on the activities of glutathione peroxidase and superoxidedismutase enzymes and malondialdehyde levels in heart tissues of guineapigs. Curr Med Res Opin 1997; 14 (1): 47-52.
Pedraza-Chaverry J, Maldonado PD, Medina-Campos ON, Olivares-CorichiIM, Granados-Silvestre MA, Hernández-Pando R et al. Garlic amelioratesgentamicin nephrotoxicity: relation to antioxidant enzymes. Free RadicBiol Med 2000; 29 (7): 602-611.
Ramsammy L, Ling K, Josepovitz C, Levine R, Kaloyanides GJ. Effect ofgentamicin on lipid peroxidation in rat renal cortex. Biochem Pharmacol1985; 34 (21): 3895-3900.
Kumar KV, Shifow AA, Naidu MU, Ratnakar KS. Carvedilol: a beta blockerwith antioxidant property protects against gentamicin-inducednephrotoxicity in rats. Life Sci 2000; 66 (26): 2603-2611.
Shifow AA, Kumar KV, Naidu MU, Ratnakar KS. Melatonin, a pineal hormonewith antioxidant property, protects against gentamicin-inducednephrotoxicity in rats. Nephron 2000; 85 (2): 167-174.
Abdel-Naim AB, Abdel-Wahab MH, Attia FF. Protective effects of vitamin Eand probucol against gentamicin-induced nephrotoxicity in rats.Pharmacol Res 1999; 40 (2): 183-187.