2021, Number 1
<< Back Next >>
Dermatología Cosmética, Médica y Quirúrgica 2021; 19 (1)
The Microbiome Revolution and Cutaneous Diseases. Review Article
Maza MM, Rivas CMK, García RMT
Language: Spanish
References: 85
Page: 52-63
PDF size: 342.73 Kb.
ABSTRACT
The human body is colonized by a great number and variety
of microorganisms which, together with their genomes and interactions
with the host, make up what we know as the human
microbiome.
In recent years, interest in the role of the human microbiome
in the development of different diseases has grown, and
the field of dermatology is no exception. Different studies have
shown that modifications in the cutaneous and gastrointestinal
microbiome play a role in the pathogenesis of different cutaneous
diseases. A better characterization of the human microbiome
and its interaction with the immune system may allow
deeper understanding of these pathologies, and even the opportunity
to create new therapeutic modalities.
This review focuses on the most recent knowledge about
the gastrointestinal and skin microbiome and their participation
in pathogenic mechanisms of different skin conditions, in addition
to analyzing the evidence about the therapeutic potential
of modifying the microbiome through the use of probiotics
and prebiotics in dermatology.
REFERENCES
Polkowska-Pruszyn´ska B, Gerkowicz A y Krasowska D. The gut microbiome alterations in allergic and inflammatory skin diseases: an update. J Eur Acad Dermatol Venereol 2020; 34(3):455-464. doi:10.1111/jdv.15951.
Chen P, He G, Qian J, Zhan Y y Xiao R, Potential role of the skin microbiota in inflammatory skin diseases, J Cosmet Dermatol 2020; 10.1111/jocd.13538.
Requena T y Velasco M, The human microbiome in sickness and in health, Rev Clin Esp 2019; S0014-2565(19)30194-8. doi:10.1016/j. rce.2019.07.004.
Lunjani N, Hlela C y O’Mahony L, Microbiome and skin biology, Curr Opin Allergy Clin Immunol 2019; 19(4):328-33. doi:10.1097/ ACI.0000000000000542.
Muszer M, Noszczyn´ska M, Kasperkiewicz K y Skurnik M, Human microbiome: when a friend becomes an enemy, Arch Immunol Ther Exp (Varsovia) 2015; 63(4):287-98. doi:10.1007/s00005-015-0332-3.
Schneider AM y Nelson AM, Skin microbiota: friend or foe in pediatric skin health and skin disease, Pediatr Dermatol 2019; 36(6):815-22. doi:10.1111/pde.13955.
Vojvodic A, Peric-Hajzler Z, Matovic D et al., Gut microbiota and the alteration of immune balance in skin diseases: from nutraceuticals to fecal transplantation, Open Access Maced J Med Sci 2019; 7(18):3034-38. doi:10.3889/oamjms.2019.827.
Chen YE y Tsao H, The skin microbiome: current perspectives and future challenges, J Am Acad Dermatol 2013; 69(1):143-55. doi:10.1016/j. jaad.2013.01.016.
Hannigan GD, Meisel JS, Tyldsley AS et al., The human skin doublestranded dna virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome, mBio 2015; 6(5):e01578-15. doi:10.1128/mBio.01578-15.
Das B y Nair GB, Homeostasis and dysbiosis of the gut microbiome in health and disease, J Biosci 2019; 44(5):117.
Brown K, DeCoffe D, Molcan E y Gibson DL, Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease, Nutrients 2012; 4(8):1095-1119. doi:10.3390/nu4081095.
Mukhopadhya I, Segal JP, Carding SR, Hart AL y Hold GL, The gut virome: the “missing link” between gut bacteria and host immunity?, Therap Adv Gastroenterol 2019; 12. doi:10.1177/1756284819836620.
Ahluwalia B, Magnusson MK y Öhman L, Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad, Scand J Gastroenterol 2017; 52(11):1185-93.
Foulongne V, Sauvage V, Hebert C et al., Human skin microbiota: high diversity of dna viruses identified on the human skin by high throughput sequencing, plos One 2012; 7(6):e38499. doi:10.1371/journal. pone.0038499.
Schoch JJ, Monir RL, Satcher KG, Harris J, Triplett E y Neu J, The infantile cutaneous microbiome: a review, Pediatr Dermatol 2019; 36(5):574-80. doi:10.1111/pde.13870.
Weidinger S y Novak N, Atopic dermatitis. Lancet 2016; 387(10023): 1109-22. doi:10.1016/S0140-6736(15)00149-X.
Kennedy EA, Connolly J, Hourihane JO et al., Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year, J Allergy Clin Immunol 2017; 139(1):166-72. doi:10.1016/j.jaci.2016.07.029.
Hülpüsch C, Tremmel K, Hammel G et al., Skin pH–dependent Staphylococcus aureus abundance as predictor for increasing atopic dermatitis severity, Allergy 2020; 00:1-11. doi.org/10.1111/all.14461.
Nakatsuji T, Chen TH, Narala S et al., Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis, Sci Transl Med 2017; 9(378). doi.org/10.1126/ sci translmed.aah4680.
Nakatsuji T, Yun T, Butcher A et al., Clinical improvement in atopic dermatitis following autologous application of microbiome therapy targeting Staphylococcus aureus, J Invest Dermatol 2018; 138(5):S72. doi. org/10.1016/j.jid.2018.03.433.
Woo TE y Sibley CD, The emerging utility of the cutaneous microbiome in the treatment of acne and atopic dermatitis, J Am Acad Dermatol 2020; 82(1):222-8. doi:10.1016/j.jaad.2019.08.078.
Cau L, Williams MR, Butcher AM et al., Staphylococcus epidermidis protease ecpa can be a deleterious component of the skin microbiome in atopic dermatitis, J Allergy Clin Immunol 2020; S0091-6749(20)30953-2. doi:10.1016/j.jaci.2020.06.024.
Forno E, Onderdonk AB, McCracken J et al., Diversity of the gut microbiota and eczema in early life, Clin Mol Allergy 2008; 6:11. doi:10.1186/1476-7961-6-11.
Abrahamsson TR, Jakobsson HE, Andersson AF et al., Low diversity of the gut microbiota in infants with atopic eczema, J Allergy Clin Immunol 2012; 129(2):434-40.e4402. doi:10.1016/j.jaci.2011.10.025.
Ismail IH, Oppedisano F, Joseph SJ et al., Reduced gut microbial diversity in early life is associated with later development of eczema but not atopy in high-risk infants, Pediatr Allergy Immunol 2012; 23(7):674-81. doi:10.1111/j.1399-3038.2012.01328.x.
Zheng H, Liang H, Wang Y et al., Altered gut microbiota composition associated with eczema in infants, plos One 2016; 11(11):e0166026. doi:10.1371/journal.pone.0166026.
Tan JK y Bhate K, A global perspective on the epidemiology of acne, Br J Dermatol 2015; 172 Suppl 1:3-12. doi:10.1111/bjd.13462.
Dréno B, Pécastaings S, Corvec S et al., Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates, J Eur Acad Dermatol Venereol 2018; 32 Suppl 2:5-14. doi:10.1111/jdv.15043.
Kistowska M, Gehrke S, Jankovic D et al., il-1β drives inflammatory responses to propionibacterium acnes in vitro and in vivo, J Invest Dermatol 2014; 134(3):677-85. doi:10.1038/jid.2013.438.
Hazarika, N, Acne vulgaris: new evidence in pathogenesis and future modalities of treatment, J Dermatolog Treat 2019; 1-33. doi:10.1080/09 546634.2019.1654075.
Wang Y, Hata TR, Tong YL et al., The anti-inflammatory activities of Propionibacterium acnes camp factor-targeted acne vaccines, J Invest Dermatol 2018; 138(11):2355-64. doi:10.1016/j.jid.2018.05.032.
Park SY, Kim HS, Lee SH et al., Characterization and analysis of the skin microbiota in acne: impact of systemic antibiotics, J Clin Med 2020; 9(1):168. doi:10.3390/jcm9010168.
Dréno B, Martin R, Moyal D et al., Skin microbiome and acne vulgaris: Staphylococcus, a new actor in acne, Exp Dermatol 2017; 26:798-803. doi. org/10.1111/exd.13296.
Numata S, Akamatsu H, Akaza N et al., Analysis of facial skin-resident microbiota in Japanese acne patients, Dermatology 2014; 228(1):86-92. doi:10.1159/000356777.
Coughlin CC, Swink SM, Horwinski J et al., The preadolescent acne microbiome: a prospective, randomized, pilot study investigating characterization and effects of acne therapy, Pediatr Dermatol 2017; 34(6):661-4. doi.org/10.1111/pde.13261.
Tan J y Berg M, Rosacea: current state of epidemiology, J Am Acad Dermatol 2013; 69(6 Suppl 1):S27-S35. doi:10.1016/j.jaad.2013.04.043.
Two AM, Wu W, Gallo RL y Hata TR, Rosacea: part i. Introduction, categorization, histology, pathogenesis, and risk factors, J Am Acad Dermatol 2015; 72(5):749-60. doi:10.1016/j.jaad.2014.08.028.
O’Reilly N, Menezes N y Kavanagh K, Positive correlation between serum immunoreactivity to Demodex-associated bacillus proteins and erythematotelangiectatic rosacea, Br J Dermatol 2012; 167(5):1032-36. doi:10.1111/j.1365-2133.2012.11114.x.
Jarmuda S, McMahon F, Zaba R et al., Correlation between serum reactivity to Demodex-associated Bacillus oleronius proteins, and altered sebum levels and Demodex populations in erythematotelangiectatic rosacea patients, Js Med Microbiol 2014; 63(Pt 2):258-62. doi:10.1099/ jmm.0.065136-0.
McMahon F, Banville N, Bergin DA et al., Activation of neutrophils via ip3 pathway following exposure to Demodex-associated bacterial proteins, Inflammation 2016; 39(1):425-33. doi:10.1007/s10753-015-0264-4.
Maher A, Staunton K y Kavanagh K, Analysis of the effect of temperature on protein abundance in Demodex-associated Bacillus oleronius, Pathog Dis 2018; 76(4):10. doi:10.1093/femspd/fty032.
Nam JH, Yun Y, Kim HS et al., Rosacea and its association with enteral microbiota in Korean females, Exp Dermatol 2018; 27(1):37-42. doi:10.1111/exd.13398.
Chen YJ, Lee WH, Ho HJ, Tseng CH y Wu CY, An altered fecal microbial profiling in rosacea patients compared to matched controls, J Formos Med Assoc 2020; S0929-6646(20)30172-8. doi:10.1016/j. jfma.2020.04.034.
Ellis SR, Nguyen M, Vaughn AR et al., The skin and gut microbiome and its role in common dermatologic conditions, Microorganisms 2019; 7(11):550. doi:10.3390/microorganisms7110550.
Bhattarai S, Agrawal A, Rijal A, Majhi S, Pradhan B y Dhakal SS, The study of prevalence of Helicobacter pylori in patients with acne rosacea, Kathmandu Univ Med J 2012; 10(40):49-52. doi:10.3126/kumj. v10i4.10995.
Thompson KG, Rainer BM, Antonescu C et al., Comparison of the skin microbiota in acne and rosacea, Exp Dermatol 2020; 00:1–6. doi. org/10.1111/exd.14098.
Hugh JM y Weinberg JM, Update on the pathophysiology of psoriasis, Cutis 2018; 102(5S):6-12.
Ellis SR, Nguyen M, Vaughn AR et al., The skin and gut microbiome and its role in common dermatologic conditions, Microorganisms 2019; 7(11):550. doi:10.3390/microorganisms7110550.
Alekseyenko AV, Perez-Perez GI, De Souza A et al., Community differentiation of the cutaneous microbiota in psoriasis, Microbiome 2013; 1(1):31. doi:10.1186/2049-2618-1-31.
Chang HW, Yan D, Singh R et al., Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization, Microbiome 2018; 6(1):154. doi:10.1186/s40168-018-0533-1.
Assarsson M, Duvetorp A, Dienus O, Söderman J y Seifert O. Significant changes in the skin microbiome in patients with chronic plaque psoriasis after treatment with narrowband ultraviolet b, Acta Derm Venereol 2018; 98(4):428-36. doi:10.2340/00015555-2859.
Myers B, Brownstone N, Reddy V et al., The gut microbiome in psoriasis and psoriatic arthritis, Best Pract Res Clin Rheumatol 2019; 33(6):101494. doi:10.1016/j.berh.2020.101494.
Chen YJ, Ho HJ, Tseng CH, Lai ZL, Shieh JJ y Wu CY, Intestinal microbiota profiling and predicted metabolic dysregulation in psoriasis patients, Exp Dermatol 2018; 27(12):1336-43. doi:10.1111/exd.13786.
Alesa DI, Alshamrani HM, Alzahrani YA, Alamssi DN, Alzahrani NS y Almohammadi ME, The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics, J Family Med Prim Care 2019; 8(11):3496-503. doi:10.4103/jfmpc.jfmpc_709_19.
Komine M, Recent advances in psoriasis research; the clue to mysterious relation to gut microbiome, Int J Mol Sci 2020; 21(7):2582. doi:10.3390/ijms21072582.
Pratt CH, King LE Jr, Messenger AG, Christiano AM y Sundberg JP, Alopecia areata, Nat Rev Dis Primers 2017; 3:17011. doi:10.1038/ nrdp.2017.11.
Moreno-Arrones OM, Serrano-Villar S, Pérez-Brocal V et al., Analysis of the gut microbiota in alopecia areata: identification of bacterial biomarkers, J Eur Acad Dermatol Venereol 2020; 34(2):400-5. doi:10.1111/ jdv.15885.
Xie WR, Yang XY, Xia HH, Wu LH y He XX, Hair regrowth following fecal microbiota transplantation in an elderly patient with alopecia areata: a case report and review of the literature, World J Clin Cases 2019; 7(19):3074-81. doi:10.12998/wjcc.v7.i19.307.
Rebello D, Wang E, Yen E, Lio PA y Kelly CR, Hair growth in two alopecia patients after fecal microbiota transplant, acg Case Rep J 2017; 4:e107. doi:10.14309/crj.2017.107.
Wikramanayake TC, Borda LJ, Miteva M y Paus R, Seborrheic dermatitis- looking beyond Malassezia, Exp Dermatol 2019; 28(9):991-1001. doi:10.1111/exd.14006.
Lin Q, Panchamukhi A, Li P et al., Malassezia and Staphylococcus dominate scalp microbiome for seborrheic dermatitis, Bioprocess Biosyst Eng 2020. doi:10.1007/s00449-020-02333-5.
Ring HC, Thorsen J, Saunte DM et al., The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls, jama Dermatol 2017; 153(9):897-905. doi:10.1001/jamadermatol.2017.0904.
Ring HC, Sigsgaard V, Thorsen J et al., The microbiome of tunnels in hidradenitis suppurativa patients, J Eur Acad Dermatol Venereol 2019; 33(9):1775-80. doi:10.1111/jdv.15597.
Ganju P, Nagpal S, Mohammed MH et al., Microbial community profiling shows dysbiosis in the lesional skin of vitiligo subjects, Sci Rep 2016; 6:18761. doi:10.1038/srep18761.
Johnson TR, Gómez BI, McIntyre MK et al., The cutaneous microbiome and wounds: new molecular targets to promote wound healing, Int J Mol Sci 2018; 19(9):2699. doi:10.3390/ijms19092699.
Gopalakrishnan V, Spencer CN, Nezi L et al., Gut microbiome modulates response to anti-pd-1 immunotherapy in melanoma patients, Science 2018; 359(6371):97-103. doi:10.1126/science.aan4236.
Markowiak P y S’liz˙ewska K, Effects of probiotics, prebiotics, and synbiotics on human health, Nutrients 2017; 9(9):1021. doi:10.3390/ nu9091021).
Szántó M, Dózsa A, Antal D, Szabó K, Kemény L y Bai P, Targeting the gut-skin axis-probiotics as new tools for skin disorder management?, Exp Dermatol 2019; 28(11):1210-18. doi:10.1111/exd.14016.
Chang YS, Trivedi MK, Jha A, Lin YF, Dimaano L y García-Romero MT, Synbiotics for prevention and treatment of atopic dermatitis: a metaanalysis of randomized clinical trials, jama Pediatr 2016; 170(3):236-42. doi:10.1001/jamapediatrics.2015.3943.
Rusu E, Enache G, Cursaru R et al., Prebiotics and probiotics in atopic dermatitis, Exp Ther Med 2019; 18(2):926-31. doi:10.3892/ etm.2019.7678.
Navarro-López V, Ramírez-Boscá A, Ramón-Vidal D et al., Effect of oral administration of a mixture of probiotic strains on scorad Index and use of topical steroids in young patients with moderate atopic dermatitis: a randomized clinical trial, jama Dermatol 2018; 154(1):37-43. doi:10.1001/jamadermatol.2017.3647.
Huang R, Ning H, Shen M, Li J, Zhang J y Chen X, Probiotics for the treatment of atopic dermatitis in children: a systematic review and meta-analysis of randomized controlled trials, Front Cell Infect Microbiol 2017; 7:392. doi:10.3389/fcimb.2017.00392.
García-Larsen V, Ierodiakonou D, Jarrold K et al., Diet during pregnancy and infancy and risk of allergic or autoimmune disease: a systematic review and meta-analysis, plos Med 2018; 15(2):e1002507. doi:10.1371/ journal.pmed.1002507.
Yu Y, Dunaway S, Champer J, Kim J y Alikhan A, Changing our microbiome: probiotics in dermatology, Br J Dermatol 2020; 182(1):39-46. doi:10.1111/bjd.18088.
Lee GR, Maarouf M, Hendricks AJ, Lee DE y Shi VY, Topical probiotics: the unknowns behind their rising popularity, Dermatol Online J 2019; 25(5):13030/qt2v83r5wk.
Wan P y Chen J, A calm, dispassionate look at skin microbiota in atopic dermatitis: an integrative literature review, Dermatol Ther (Heidelberg) 2020; 10:53-61.
Myles IA, Earland NJ, Anderson ED et al., First-in-human topical microbiome transplantation with roseomonas mucosa for atopic dermatitis, jci Insight 2018; 3(9):1-13.
Goodarzi A, Mozafarpoor S, Bodaghabadi M et al., The potential of probiotics for treating acne vulgaris: a review of literature on acne and microbiota, Dermatologic Therapy 2020; 33:e13279. doi.org/10.1111/ dth.13279.
Kim J, Ko Y, Park YK et al., Dietary effect of lactoferrin-enriched fermented milk on skin surface lipid and clinical improvement of acne vulgaris, Nutrition 2010; 26(9):902-9. doi:10.1016/j.nut.2010.05.011.
Wang Y, Kuo S, Shu M, et al., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris, Appl Microbiol Biotechno 2014; 98:411-24. doi.org/10.1007/s00253-013-5394-8.
Yang AJ, Marito S, Yang JJ et al., A microtube array membrane (mtam) encapsulated live fermenting Staphylococcus epidermidis as a skin probiotic patch against Cutibacterium acnes, Int J Mol Sci 2018; 20(1):14. doi:10.3390/ijms20010014.
Jung GW, Tse JE, Guiha I et al., Prospective, randomized, open-label trial comparing the safety, efficacy, and tolerability of an acne treatment regimen with and without a probiotic supplement and minocycline in subjects with mild to moderate acne, J Cutan Med Surg 2013; 17(2):114-22. doi:10.2310/7750.2012.12026.
Brown TL, Petrovski S, Dyson ZA et al., The formulation of bacteriophage in a semi solid preparation for control of Propionibacterium acnes growth, plos One 2016; 11(3): e0151184. doi:10.1371/journal. pone.0151184.
Baldwin H, Blanco D, McKeever C et al., Results of a phase 2 efficacy and safety study with sb204, an investigational topical nitric oxidereleasing drug for the treatment of acne vulgaris, J Clin Aesthet Dermatol 2016; 9(8):12-18.
Perin B, Addetia A y Qin X, Transfer of skin microbiota between two dissimilar autologous microenvironments: a pilot study, plos One 2019; 14(12):e0226857. doi:10.1371/journal.pone.0226857.