2020, Number 4
<< Back Next >>
Arch Neurocien 2020; 25 (4)
Mechanisms of association between Alzheimer’s disease and diabetes mellitus: The insulin paradox
Hernández-Contreras KA, Martínez-Díaz JA, Hernández-Aguilar ME, Herrera-Covarrubias D, Rojas-Durán F, Aranda-Abreu GE
Language: Spanish
References: 60
Page: 45-54
PDF size: 638.99 Kb.
ABSTRACT
Between Alzheimer’s Disease (AD) and Diabetes Mellitus (DM) it has been evidenced that there are multiple
mechanisms in common in both pathologies, ranging from cognitive deterioration in the clinical aspect to
biochemical alterations of which the following can be highlighted; the increase in pro-inflammatory agents
and excitotoxicity, increase in oxidative stress and increase in the final products of advanced glycation (AGEs),
alterations in glucose metabolism, as well as alterations in the mTORC1 /S6 and GSK-3 pathways β; It also
highlights the role of Insulin Resistance (Ri), where this alteration is linked to both AD and MD at various
points in their physiopathology, either by influencing the different mechanisms mentioned above or directly.
Objective. It is described how the influence of this hormone is such, whether its levels are high, effect known
as hyperinsulinism or low effect known as hypoinsulinism, since both extremes lead to neurodegenerative
effects characteristic of AD, mainly in the increase of β amyloid (Aβ) and hyperphosphorylated tau (pTau),
through different processes.
Contribution. We describe this phenomenon as “The insulin paradox”,
in which the insulin/PI3K/Akt pathway also stands out as a crucial point, since independently of hyper
or hypoinsulinism conditions this pathway is altered in both scenarios. This relationship between AD and
DM is considered from the point of view of hypoglycemic treatments aimed at the attention of DM, which
seem to interfere with AD, through several of the mechanisms in common that these pathologies have.
Conclusion. Although it is too early to consider that these treatments for AD will give the same results
in cases of AD, these data are valuable precedents in the search for therapeutic alternatives for AD.
REFERENCES
Gale SA, Acar D, Daffner KR. Dementia. Am J Med. 2018;131(10):1161- 1169. https://www.ncbi.nlm.nih.gov/pubmed/29425707
Patterson C. Alzheimer’s Disease International. The World Alzheimer Report. 20184-7. https://www.alzint.org/resource/world-alzheimer-report-2018/
Spittau B. Aging Microglia-Phenotypes, Functions and Implications for Age-Related Neurodegenerative Diseases. Front Aging Neurosci. 2017;9:194. https://www.ncbi.nlm.nih.gov/pubmed/28659790
McDade E, Bateman RJ. Stop Alzheimer’s before it starts. Nature.2017; 547(7662):153-155. https://www.ncbi.nlm.nih.gov/pubmed/28703214
Neumiller JJ et al. Professional Practice Committee: Standards of Medical Care in Diabetes-2019. 2019 https://doi.org/10.2337/dc19-SppC01
Harreiter J, Roden M. [Diabetes mellitus-Definition, classification, diagnosis, screening and prevention (Update 2019)]. Wien Klin Wochenschr. 2019; 131(S1):6-15. doi: 10.1007/s00508-019-1450-4
Petersmann A, et al. Definition, Classification and Diagnosis of Diabetes Mellitus. Exp Clin Endocrinol Diabetes. 2018;126(7):406-410. https:// www.ncbi.nlm.nih.gov/pubmed/29975979
Cisternas P., Inestrosa N.C. Brain glucose metabolism: Role of Wnt signaling in the metabolic impairment in Alzheimer’s disease. Neurosci Biobehav Rev. 2017; 80:316-328. https://www.ncbi.nlm.nih.gov/ pubmed/28624434
Dodd G.T., Tiganis T. Insulin action in the brain: Roles in energy and glucose homeostasis. J Neuroendocrinol. 2017; 29(10). https://www. ncbi.nlm.nih.gov/pubmed/28758251
Mestizo-Gutiérrez S.L., Hernández-Aguilar M.E., Rojas-Durán F., Manzo- Denes J., Abreu G.E.A. La enfermedad de Alzheimer y la Diabetes Mellitus. Rev. eNeurobiol. 2014; 1-14. https://www.uv.mx/eneurobiologia/ vols/2014/10/Mestizo/HTML.html
Bloom G.S., Lazo J.S., Norambuena A. Reduced brain insulin signaling: a seminal process in Alzheimer’s disease pathogenesis. Neuropharmacol. 2018;136(Pt B):192-195. https://www.ncbi.nlm.nih. gov/pubmed/28965829
Li J., Cesari M., Liu F., Dong B, Vellas B. Effects of Diabetes Mellitus on cognitive decline in patients with Alzheimer Disease: A Systematic Review. Can J Diabetes. 2017; 41(1):114-119. https://www.ncbi.nlm.nih.gov/ pubmed/27614804
Stanley M., Macauley S.L., Holtzman D.M. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence. J Exp Med. 2016; 213(8):1375-1385. https://www.ncbi.nlm.nih.gov/pubmed/27432942
Rajmohan R., Reddy P.H. Amyloid-Beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimers Dis. 2017; 57(4):975-999. https://www.ncbi.nlm. nih.gov/pubmed/27567878
Zuroff L., Daley D., Black K.L., Koronyo-Hamaoui M. Clearance of cerebral Aß in Alzheimer’s disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci. 2017; 74(12):2167-2201. https://www. ncbi.nlm.nih.gov/pubmed/28197669
Carroll C.M., Li Y.M. Physiological and pathological roles of the α-secretase complex. Brain Res Bull. 2016;126(Pt 2):199-206. https:// www.ncbi.nlm.nih.gov/pubmed/27133790
Pascoal T.A., et al. Amyloid-ß and hyperphosphorylated tau synergy drives metabolic decline in preclinical Alzheimer’s disease. Mol Psychiatry. 2017;22(2):306-311. https://www.ncbi.nlm.nih.gov/ pubmed/27021814
Medeiros R., Baglietto-Vargas D., LaFerla F.M. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci Ther. 2011;17(5):514-524 https://www.ncbi.nlm.nih.gov/pubmed/20553310
Guo T., Dakkak D., Rodriguez-Martin T., Noble W., Hanger DP. A pathogenic tau fragment compromises microtubules, disrupts insulin signaling and induces the unfolded protein response. Acta Neuropathol Commun. 2019; 7(1):2.https://www.ncbi.nlm.nih.gov/pubmed/30606258
Eisenberg D.S., Sawaya M.R. Neurodegeneration: Taming tangled tau. Nature. 2017; 547(7662):170-171. https://www.ncbi.nlm.nih.gov/ pubmed/28678777
Alzheimer’s A. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 2016; 12(4):459-509. https://www.ncbi.nlm.nih.gov/pubmed/27570871
Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin Transl Imaging. 2013;1(4) https://www.ncbi.nlm.nih.gov/pubmed/24409422
Andersen J.V., Christensen S.K., Aldana B.I., Nissen J.D., Tanila H., Waagepetersen H.S. Alterations in cerebral cortical glucose and glutamine metabolism precedes amyloid plaques in the APPswe/PSEN1dE9 mouse model of Alzheimer’s disease. Neurochem Res. 2017;42(6):1589-1598. https://www.ncbi.nlm.nih.gov/pubmed/27686658
Pourfarzam M., Zadhoush F., Sadeghi M. The difference in correlation between insulin resistance index and chronic inflammation in type 2 diabetes with and without metabolic syndrome. Adv Biomed Res. 2016; 5:153.https://www.ncbi.nlm.nih.gov/pubmed/27713874
Cuéllar A.Y.D., Sibaja C.M., Aguirre A.U. Endocrinología clínica de Dorantes y Martínez. Editorial El manual Moderno; 2016. https://books. google.com/s&lr=&id=9bEjDAAAQBAJ&oi=fnd&pg=PT46&dq=Endoc rinología+clínica+de+Dorantes+y+Martínez.+5a.+ed.+México,+D. F&ots=BbNVBWJDY_&sig=4HRCEwS0_AWWF4sgVXWEf0YOaDQ
Kanat M., DeFronzo R.A.., Abdul-Ghani M.A. Treatment of prediabetes. World J Diabetes. 2015;6(12):1207-1222. https://www.ncbi.nlm.nih. gov/pubmed/26464759
Roden M. Diabetes mellitus–definition, klassifikation und diagnose. Wiener klinische Wochenschrift. 2016;128(2):37-40. https://link. springer.com/article/10.1007/s00508-015-0931-3
Vieira M.N.N., Lima-Filho R.A.S., De Felice F.G. Connecting Alzheimer’s disease to diabetes: underlying mechanisms and potential therapeutic targets. Neuropharmacol. 2018; 136(Pt B):160-171.https://www.ncbi. nlm.nih.gov/pubmed/29129775
Simó R., Ciudin A., Simó-Servat O., Hernández C. Cognitive impairment and dementia: a new emerging complication of type 2 diabetes-The diabetologist’s perspective. Acta Diabetol. 2017;54(5):417-424. https:// www.ncbi.nlm.nih.gov/pubmed/28210868
Wu J., et al. High glucose induces formation of tau hyperphosphorylation via Cav-1-mTOR pathway: a potential molecular mechanism for diabetesinduced cognitive dysfunction. Oncotarget. 2017; 8(25):40843-40856. https://www.ncbi.nlm.nih.gov/pubmed/28489581
Li Z.G., Zhang W., Sima A.A. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes. 2007; 56(7):1817-1824. https://www. ncbi.nlm.nih.gov/pubmed/17456849
Sajan M., et al. Brain insulin signaling is increased in insulin-resistant states and decreases in FOXOs and PGC-1α and increases in Aß1-40/42 and phospho-tau may Abet Alzheimer Development. Diabetes. 2016;65(7):1892-1903. https://www.ncbi.nlm.nih.gov/ pubmed/26895791
Steen E., et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease is this type 3 diabetes. J Alzheimers Dis. 2005;7(1):63-80. https://www.ncbi.nlm.nih.gov/ pubmed/15750215
Liu J., Chang L., Song Y., Li H., Wu Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front Neurosci. 2019; 13:43. https://www.ncbi. nlm.nih.gov/pubmed/3080005
van Bussel F.C., et al. Increased GABA concentrations in type 2 diabetes mellitus are related to lower cognitive functioning. Medicine (Baltimore). 2016;95(36): e4803. https://www.ncbi.nlm.nih.gov/pubmed/27603392
Petersen M.C., Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133-2223. https://www.ncbi.nlm. nih.gov/pubmed/30067154
Baglietto-Vargas D., Shi J., Yaeger D.M., Ager R., LaFerla F.M. Diabetes and Alzheimer’s disease crosstalk. Neurosci Biobehav Rev. 2016; 64:272-287. https://www.ncbi.nlm.nih.gov/pubmed/26969101
Paouri E., Tzara O., Kartalou G.I., Zenelak S., Georgopoulos S. Peripheral tumor necrosis factor-alpha (TNF-α) modulates amyloid pathology by regulating blood-derived immune cells and glial response in the brain of AD/TNF transgenic mice. J Neurosci. 2017;37(20):5155-5171. https:// www.ncbi.nlm.nih.gov/pubmed/28442538
Butterfield D.A., Boyd-Kimball D. Oxidative stress, amyloid-ß peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s Disease. J Alzheimers Dis. 2018;62(3):1345-1367. https:// www.ncbi.nlm.nih.gov/pubmed/29562527
Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018; 14:450-464. https://www.ncbi.nlm.nih.gov/ pubmed/29080524
Cai Z., et al. Role of RAGE in Alzheimer’s Disease. Cell Mol Neurobiol. 2016;36(4):483-495. https://www.ncbi.nlm.nih.gov/ pubmed/26175217
González-Reyes R.E., Aliev G., Ávila-Rodrigues M., Barreto G.E. Alterations in glucose metabolism on cognition: a possible link between diabetes and dementia. Curr Pharm Des. 2016;22(7):812-818. https:// www.ncbi.nlm.nih.gov/pubmed/26648470
Altschul D.M., Starr J.M., Deary I.J. Cognitive function in early and later life is associated with blood glucose in older individuals: analysis of the Lothian Birth Cohort of 1936. Diabetologia. 2018;61(9):1946-1955. https://www.ncbi.nlm.nih.gov/pubmed/29860628
Kim B., Backus C., Oh S., Hayes J.M., Feldman E.L. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology. 2009;150(12):5294-5301. https://www.ncbi. nlm.nih.gov/pubmed/19819959
Ke Y.D., Delerue F., Gladbach A., Götz J., Ittner L.M. Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer’s disease. PLoS One. 2009;4(11): e7917. https://www.ncbi. nlm.nih.gov/pubmed/19936237
An Y., et al. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement. 2018;14(3):318-329. https://www.ncbi. nlm.nih.gov/pubmed/29055815
Lester-Coll N., Rivera E.J., Soscia S.J., Doiron K., Wands J.R., de la Monte S.M. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis. 2006;9(1):13-33 https:// www.ncbi.nlm.nih.gov/pubmed/16627931
Sinagoga K.L., et al. Distinct roles for the mTOR pathway in postnatal morphogenesis, maturation and function of pancreatic islets. Development. 2017; 144(13):2402-2414. https://www.ncbi.nlm.nih.gov/ pubmed/28576773
Kickstein E., et al. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci U S A. 2010; 107(50):21830-21835. https://www.ncbi.nlm.nih.gov/ pubmed/21098287
Zhang Y., et al. Diabetes mellitus and Alzheimer’s disease: GSK-3ß as a potential link. Behav Brain Res. 2018; 339:57-65. https://www.ncbi.nlm. nih.gov/pubmed/29158110
Qu Z.S., et al. Glycogen synthase kinase-3 regulates production of amyloid-ß peptides and tau phosphorylation in diabetic rat brain. The Scientific World Journal. 2014;2014 http://downloads.hindawi.com/ journals/tswj/2014/878123.pdf
Amin J., et al. Effect of amyloid-ß(Aß) immunization on hyperphosphorylated tau: a potential role for glycogen synthase kinase (GSK)-3ß. Neuropathol Appl Neurobiol. 2015; 41(4):445-457. https://www.ncbi.nlm.nih.gov/ pubmed/25486988
Tam J.H., Seah C., Pasternak S.H. The amyloid precursor protein is rapidly transported from the golgi apparatus to the lysosome and where it is processed into beta-amyloid. Mol Brain. 2014;7:54. https://www.ncbi. nlm.nih.gov/pubmed/25085554
Freude S, et al. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes. 2005; 54(12):3343-3348.
Freude S., et al. Neuronal IGF-1 resistance reduces Abeta accumulation and protects against premature death in a model of Alzheimer’s disease. FASEB J. 2009; 23(10):3315-3324. https://www.ncbi.nlm.nih.gov/ pubmed/19487308
Devi L., Alldred M.J., Ginsberg S.D., Ohno M. Mechanisms underlying insulin deficiency-induced acceleration of ß-amyloidosis in a mouse model of Alzheimer’s disease. PloS one. 2012;7(3): e32792. https:// journals.plos.org/plosone/article?id=10.1371/journal.pone.0032792
Kalra S. Diabesity. J Pak Med Assoc. 2013;63(4):532-534. https://www. ncbi.nlm.nih.gov/pubmed/23905459
58.de la Monte SM, Tong M, Lester-Coll N, Plater M, Wands JR. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis. 2006;10(1):89-109. https://www.ncbi.nlm.nih.gov/pubmed/16988486
Takeda S., et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci U S A. 2010;107(15):7036- 7041.https://www.ncbi.nlm.nih.gov/pubmed/20231468
Valente T., Gella A., Fernández-Busquets X., Unzeta M., Durany N. Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol Dis. 2010; 37(1):67-76. https://www.ncbi.nlm.nih.gov/pubmed/19778613