2021, Number 1
<< Back Next >>
Med Int Mex 2021; 37 (1)
Glicocalyx in sepsis
Godínez-Vidal AR, Carrillo-Esper R, Cabello-Aguilera R
Language: Spanish
References: 54
Page: 86-93
PDF size: 359.32 Kb.
ABSTRACT
Glycocalyx is structurally conformed by glycoproteins and glycosaminoglycans. It
constitutes a layer covering the vascular endothelium and is the interface among
blood flow, endothelial cell and interstice. Glycocalyx is essential to maintain
the integrity of the endothelial function. The fragments of glycocalyx released
into the blood during sepsis can serve as clinically relevant biomarkers, given the
pathophysiological implications of their degradation, it is also believed that the
degradation contributes to the dysfunction of the microcirculation in sepsis. This
paper reviews the current concepts related to the degradation of glycocalyx and
its impact on sepsis.
REFERENCES
Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol 1896; 19: 312-26. doi. 10.1113/ jphysiol.1896.sp000596.
Luft JH. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 1966; 25: 1773-1783.
Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 1996; 79: 581-589. doi. 10.1161/01.res.79.3.581.
Nieuwdorp M, Meuwese MC, Mooij HL, Ince C, et al. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol 2008; 104: 845-852. doi. 10.1152/japplphysiol. 00440.2007.
Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 2006; 55: 480-486. https://doi.org/10.2337/diabetes.55.02.06.db05-1103.
Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 2007; 9: 121-67. doi. 10.1146/annurev. bioeng.9.060906.151959.
Ince C, Mayeux PR, Nguyen T, Gomez H, et al. The endothelium in sepsis. Shock 2016; 45: 259-70. doi. 10.1097/ SHK.0000000000000473.
Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 2014; 69: 777- 84. doi. 10.1111/anae.12661.
Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth 2012; 108: 384-94. doi. 10.1093/ bja/aer515.
Martin L, Koczera P, Zechendorf E, Schuerholz T. The endothelial glycocalyx: new diagnostic and therapeutic approaches in sepsis. Biomed Res Int 2016; 2016: 1-8. doi.10.1155/2016/3758278.
Chelazzi C, Villa G, Mancinelli P, De Gaudio A, et al. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care 2015; 19: 26. doi. 10.1186/s13054-015-0741-z.
Henrich M, Gruss M, Weigand MA. Sepsis-induced degradation of endothelial glycocalix. Sci World J 2010; 10: 917-23. doi. 10.1100/tsw.2010.88.
Chappell D, Jacob M. Role of the glycocalyx in fluid management: Small things matter. Best Pract Res Clin Anaesthesiol 2014; 28: 227-34. doi. 10.1016/j.bpa.2014.06.003.
Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 2010; 87: 198-210. doi. 10.1093/cvr/cvq062.
Nam EJ, Park PW. Shedding of cell membrane-bound proteoglycans. Methods Mol Biol 2012; 836: 291-305. doi.10.1007/978-1-61779-498-8_19.
Schott U, Solomon C, Fries D, Bentzer P. The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review. Scand J Trauma Resusc Emerg Med 2016; 24: 48. doi. 10.1186/s13049-016-0239-y.
Colbert JF, Schmidt EP. Endothelial and microcirculatory function and dysfunction in sepsis. Clin Chest Med 2016;37: 263-75. doi. 10.1016/j.ccm.2016.01.009.
Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, et al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454: 345-59. doi. 10.1007/ s00424-007-0212-8.
Lekakis J, Abraham P, Balbarini A, Blann A, et al. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on peripheral circulation. Eur J Cardiovasc Prev Rehabil 2011; 18: 775-89. doi. 10.1177/1741826711398179.
Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 2012; 40: 828-839. doi. 10.1007/s10439-011-0429-8.
Pries AR, Kuebler WM. Normal endothelium. Handb Exp Pharmacol 2006; 1-40. doi. 10.1007/3-540-32967-6_1.
Chappell D, Jacob M, Paul O, Rehm M, et al. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res 2009; 104: 1313-1317. doi. 10.1161/CIRCRESAHA.108.187831.
Potter DR, Damiano ER. The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ Res 2008; 102: 770-776. doi. 10.1161/CIRCRESAHA. 107.160226.
Mulivor AW, Lipowsky HH. Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation 2009; 16: 657-666. doi. 10.3109/10739680903133714.
Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014; 69: 777-784. doi. 10.1111/anae.12661.
Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 2011; 40: 828-39. doi. 10.1007/s10439-011-0429-8.
Becker BF, Jacob M, Leipert S, Salmon AHJ, et al. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 2015; 80: 389-402. doi. 10.1111/bcp.12629.
Wiesinger A, Peters W, Chappell D, Kentrup D, et al. Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS One 2013; 8: e80905. https://doi.org/10.1371/ journal.pone.0080905.
Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 2012; 18: 1217-1223. doi. 10.1038/nm.2843.
Lukasz A, Hillgruber C, Oberleithner H, Kusche-Vihrog K, et al. Endothelial glycocalyx breakdown is mediated by angiopoietin-2. Cardiovasc Res 2017; 113: 671-680. doi.10.1093/cvr/cvx023.
Han S, Lee S-J, Kim KE, Lee HS, et al. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med 2016; 8: 335ra55. doi. 10.1126/scitranslmed.aad9260.
Proudfoot A, Johnson Z, Bonvin P, Handel T. Glycosaminoglycan interactions with chemokines add complexity to a complex system. Pharmaceuticals 2017; 10: 70. doi.10.3390/ph10030070.
Axelsson J, Xu D, Na-Kang B, Nussbacher JK, et al. Inactivation of heparan sulfate 2-O-sulfotransferase accentuates neutrophil infiltration during acute inflammation in mice. Blood 2012; 120: 1742-51. doi. 10.1182/ blood-2012-03-417139.
Parish CR. The role of heparan sulphate in inflammation. Nat Rev Immunol 2006; 6: 633-43.
Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 2005; 6: 902-10. doi. 10.1038/ni1233.
Henry CB, Duling BR. TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 2000; 279: 2815-2823. doi.10.1152/ajpheart.2000.279.6.H2815.
Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, et al. TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 2009; 104: 78-89. doi. 10.1007/s00395-008-0749-5.
Steppan J, Hofer S, Funke B, Brenner T, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res 2011; 165: 136-141. doi. 10.1016/j. jss.2009.04.034.
Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, et al. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 2008; 30: 623-627. doi. 10.1097/ SHK.0b013e3181777da3.
Puskarich MA, Cornelius DC, Tharp J, Nandi U, et al. Plasma syndecan-1 levels identify a cohort of patients with severe sepsis at high risk for intubation after large-volume intravenous fluid resuscitation. J Crit Care 2016; 36: 125-129. doi. 10.1016/j.jcrc.2016.06.027.
Hofmann-Kiefer KF, Knabl J, Martinoff N, Schiessl B, et al. Increased serum concentrations of circulating glycocalyx components in HELLP syndrome compared to healthy pregnancy: an observational study. Reprod Sci 2013; 20:318-325. doi. 10.1177/1933719112453508.
Chelazzi C, Villa G, Mancinelli P, De Gaudio A, et al. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care 2015; 19: 26. doi. 10.1186/s13054-015-0741-z.
Fleck A, Hawker F, Wallace PI, Raines G, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet 1985; 325: 781-4. doi. 10.1016/ s0140-6736(85)91447-3.
Manon-Jensen T, Multhaupt HAB, Couchman JR. Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains. FEBS J 2013; 280: 2320-31. doi. 10.1111/febs.12174.
Lipowsky HH, Lescanic A. The effect of doxycycline on shedding of the glycocalyx due to reactive oxygen species. Microvasc Res 2013; 90: 80-5. doi. 10.1016/j. mvr.2013.07.004.
Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 2010; 87:198-210. doi. 10.1093/cvr/cvq062.
Levick JR. Revision of the Starling principle: new views of tissue fluid balance. J Physiol 2004; 557 (Pt 3): 704. doi. 10.1113/jphysiol.2004.066118.
Jacob M, Bruegger D, Rehm M, Stoecketelhuber M, et al. The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 2007; 73: 575-86. doi. 10.1016/j. cardiores.2006.11.021.
Yen WY, Cai B, Yang JL, Zhang L, et al. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo. PLoS One 2015; 10: e0117133. doi. 10.1371/journal.pone.0117133.
Trani M, Dejana E. New insights in the control of vascular permeability: vascular endothelial-cadherin and other players. Curr Opin Hematol 2015; 22: 267-72. doi. 10.1097/ MOH.0000000000000137.
Bruegger D, Schwartz L, Chappell D, Jacob M, et al. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off- pump coronary artery bypass surgery. Basic Res Cardiol 2011; 106: 1111-21. doi. 10.1007/s00395-011-0203-y.
Chappell D, Bruegger D, Potzel J, Jacob M, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care 2014; 18:1. https://doi.org/10.1186/s13054-014-0538-5.
Bruegger D. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 2005; 289: H1993-9. doi. 10.1152/ajpheart.00218.2005.
Hahn RG. Must hypervolaemia be avoided? A critique of the evidence. Anaesthesiol Intens Ther 2014; 47: 1-8. doi. 10.5603/AIT.a2015.0062.