2021, Number 1
<< Back Next >>
Med Int Mex 2021; 37 (1)
Transcraneal stimulation by direct current for treatment of obesity
Perusquía-Frías EM, Aguilar-Domingo M, Cantú-Gómez AI, Jiménez-Quintero LA, Vega-López CA, Torres-Feria VD
Language: Spanish
References: 30
Page: 34-44
PDF size: 487.17 Kb.
ABSTRACT
Background: There are several treatments for losing weight and sustain it. Food
intake is controlled by the neurobehavioral pathway influenced by several factors
including persistent behavioral patterns.
Objective: To evaluate the effect of transcranial direct current stimulation in obese
patients undergoing different nutritional therapies.
Materials and Methods: A clinical, control, double-blind study was done from
January 2017 to December 2018 including three groups of patients: one undergoing
a protein diet and the other two on a hypocaloric diet. One hypocaloric diet group
and the protein diet group were subjected to the transcranial direct current stimulation
protocol. The other group received only simulated administration of transcranial direct
current stimulation.
Results: Patients submitted to the protein diet and transcranial direct current stimulation
showed a faster loss of weight than the other 2 groups. Patients undergoing the
transcranial direct current stimulation protocol, regardless the diet, showed the greatest
change in neural circuits.
Conclusiones: Nutritional therapy combined with transcranial direct current stimulation
for the treatment of obesity has satisfactory results that impact on the regulation
of neural circuits involved with eating behavior, resulting in a greater loss of weight, a
better emotional control and cognitive development.
REFERENCES
Organización Mundial de la Salud | Obesidad y sobrepeso. (2016). WHO. Retrieved from http://www.who.int/mediacentre/ factsheets/fs311/es.
González ZLI, Giraldo GNA, Estrada RA, Muñoz RAL, et al. La adherencia al tratamiento nutricional y composición corporal: un estudio transversal en pacientes con obesidad o sobrepeso. Rev Chilena de Nutr 2007; 34 (1): 46-54. https:// doi.org/10.4067/S0717-75182007000100005.
Larsen TM, Dalskov SM, van Baak M, Jebb SA, et al. Diet, Obesity, and Genes (Diogenes) Project. Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med 2010; 363: 2102-13. doi. 10.1056/NEJMoa1007137.
Krieger JW, Sitren HS, Daniels MJ, Langkamp-Henken B. Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression 1. Am J Clin Nutr 2006; 83: 260-74. doi. 10.1093/ajcn/83.2.260.
Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obes Res 2012; 13 (1): 43-56. doi. 10.1111/j.1467-789X.2011.00927.x.
Alonso-Alonso M, Woods SC, Pelchat M, Grigson PS, et al. Food reward system: current perspectives and future research needs. Nutr Rev 2015; 73 (5): 296-307. doi. 10.1093/nutrit/nuv002.
Begg DP, Woods SC. The endocrinology of food intake. Nature Rev Endocrinol 2013; 9 (10): 584-597. https://doi. org/10.1038/nrendo.2013.136.
Skoranski AM, Most SB, Lutz-Stehl M, Hoffman JE, et al. Response monitoring and cognitive control in childhood obesity. Biol Psychol 2013; 92 (2): 199-204. https://doi. org/10.1016/j.biopsycho.2012.09.001.
Delparigi A, Chen K, Salbe A, Hill J, et al. Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int J Obes 2007; 31: 440-448. https://doi.org/10.1038/sj.ijo.0803431.
McCaffery JM, Haley AP, Sweet LH, Phelan S, et al. Differential functional magnetic resonance imaging response to food pictures in successful weight-loss maintainers relative to normal-weight and obese controls. Am J Clin Nutr 2009; 90 (4): 928-934. https://doi.org/10.3945/ajcn.2009.27924.
Vainik U, Dagher A, Dubé L, Fellows LK. Neurobehavioural correlates of body mass index and eating behaviours in adults: A systematic review. Neurosci Biobehav Rev 2013; 3711 (3). https://doi.org/10.1016/j.neubiorev. 2012.11.008.
Tataranni PA, Gautier JF, Chen K, Uecker A, et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proceed Nat Acad Sci USAmerica 1999; 96 (8): 4569-74. https://doi.org/http:// dx.doi.org/10.1073/pnas.96.8.4569.
Babiloni C, Del Percio C, Valenzano A, Marzano N, et al. Frontal attentional responses to food size are abnormal in obese subjects: An electroencephalographic study. Clin Neurophysiol 2009; 120 (8): 1441-1448. https://doi. org/10.1016/j.clinph.2009.06.012.
Duffy FH, Hughes JR, Miranda F, Bernad P, et al. Status of quantitative EEG (QEEG) in clinical practice. Clinical EEG Neuroscience 1994; 25 (4): vi–xxii. https://doi. org/10.1177/155005949402500403.
Gluck ME, Alonso-Alonso M, Piaggi P, Weise CM, et al. Neuromodulation targeted to the prefrontal cortex induces changes in energy intake and weight loss in obesity. Obesity 2015; 23: 2149-2156. https://doi.org/10.1002/oby.21313.
Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nature Reviews Neuroscience 2005; 6 (9): 691-702. https://doi.org/10.1038/nrn1747.
Datta A, Truong D, Minhas P, Parra LC, et al. Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front Psychiatr 2012; 3: 91. https://doi. org/10.3389/fpsyt.2012.00091.
Kirkwood A, Rioult MG, Bear MF. Experience-dependent modification of synaptic plasticity in visual cortex. Nature 1996; 381 (6582): 526-528. https://doi. org/10.1038/381526a0.
Truong DQ, Magerowski G, Blackburn GL, Bikson M, et al. Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines. NeuroImage: Clinical 2013; 2 (1): 759-766. https://doi.org/10.1016/j.nicl.2013.05.011.
Fregni F, Orsati F, Pedrosa W, Fecteau S, et al. Transcranial direct current stimulation of the prefrontal cortex modulates the desire for specific foods. Appetite 2008; 51 (1): 34-41. https://doi.org/10.1016/j.appet.2007.09.016.
McClelland J, Bozhilova N, Campbell I, Schmidt U. (2013, November). A systematic review of the effects of neuromodulation on eating and body weight: Evidence from human and animal studies. Eur Eat Disord Rev 2013; 21 (6): 436-55. https://doi.org/10.1002/erv.2256.
Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. The Neuroscientist 2011; 17 (1): 37-53. https://doi.org/10.1177/1073858410386614.
Fregni F, Boggio PS, Mansur CG, Wagner T, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 2005; 16 (14): 1551-1555. https://doi.org/10.1097/01.wnr.0000177010.44602.5e.
Fregni F, Gimenes R, Valle AC, Ferreira MJL, et al. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arth Rheum 2006; 54 (12): 3988- 3998. https://doi.org/10.1002/art.22195.
Rubio-Morell B, Rotenberg A, Hernández-Expósito S, Pascual-Leone A. Uso de la estimulación cerebral no invasiva en los trastornos psiquiátricos de la infancia: nuevas oportunidades y retos diagnósticos y terapéuticos. Rev Neurol 2011; 53 (4): 209-225. https://doi.org/10.33588/ rn.5304.2011072.
Department of Systems Neuroscience, Fukushima Medical University School of Medicine. Brodmann Areas 27, 28, 36 and 37: The Parahippocampal and the Fusiform Gyri. 2017; 69 (4): 439-451. doi. 10.11477/mf.1416200762.
Gustavo-Ramón S. Apuntes de la asignatura Conocimiento Corporal II. Instituto Universitario de Educación Física, Universidad de Antioquia. Medellín, Colombia. Actualización: mayo de 2008: 1-18.
Kandel ER, Schwartz JH, Jessell TM. Principios de neurociencia. 4a edición. Madrid: McGrawHill-Interamericana, 2001.
Procyk E, Goldman-Rakic PS. Modulation of dorsolateral prefrontal delay activity during self-organized behavior. J Neurosci 2006; 26: 11313-11323. doi. 10.1523/JNEUROSCI. 2157-06.2006.
González-Bonet LG, Piquer-Belloch J. Correlación anatomoclínica de las neoplasias frontomesiales: cíngulo anterior, área septal y rodilla del cuerpo calloso. Neuroanatomía 2016; 5: 33-43.