2021, Number 1
<< Back Next >>
Rev Fac Med UNAM 2021; 64 (1)
Bone: Obesity-Related Disorders
Rico-Rosillo MG, Vega-Robledo GB
Language: Spanish
References: 38
Page: 7-16
PDF size: 272.26 Kb.
ABSTRACT
The bone tissue, previously considered as a mechanical support
for structure and movement, has shown an important
participation in the homeostasis of the body, including energy
metabolism and adipose tissue. Currently, it is considered
an endocrine organ that synthesizes regulatory molecules of
metabolism called osteokines. At the same time, the adipose
tissue, considered as an internal secretion gland, helps to
maintain the body energy and produces proteins and molecules
such as adipokines, some of which affect the bone
directly.
The analysis of bone resorption/formation cycle shows that
bone mass is a reflection of the balance between both. When
this balance is lost and there is a reduction of bone mass
with increased fragility, osteoporosis appears and increases
the risk of fracture. One in three women and one in five men
over 50 years old have a fracture due to osteoporosis. The
interaction between adipose tissue and bone is mediated by
cytokines, osteokines and adipokines. Obesity may affect the
bone by several mechanisms, among which the inflammatory
is included and those induced by cytokines secreted by
adipocytes such as leptin and adiponectin which can modify
bone metabolism.
Evidence supports the negative effect of obesity on bone
health, although studies about it are still contradictory.
REFERENCES
Boskey AL, Robey PG. The Composition of Bone. En: Rosen CJ, Bouillon R, Compston J, Rosen V, Wiley J & Sons (eds.). Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Eighth Edition; 2013. p. 49-56.
Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456-69.
Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta-cell and adipocyte gene expression and affects the development of metabolic diseases in wildtype mice. Pro Natl Acad Sci USA. 2008;105:5266-70.
Ashley DT, O’Sullivan EP, Davenport C, Devlin N, Crowley RK, McCaffrey N, et al. Similar to adiponectin, serum levels of osteoprotegerin are associated with obesity in healthy subjects. Metabolism. 2011;60(7):994-1000.
Novak DV, Teitelbaum SL. The osteoclast: friend or foe? Ann Rev Pathol. 2008;3:457-84.
Warren J, Zou W, Decker CE, Rohatgi N, Nelson CA, Fremont DH, et al. Correlating RANK ligand/Rank binding kinetics with osteoclast formation and function. J Cell Biochem. 2015;116(11):2476-83.
Mikami S, Katsube K, Oya M, Ishida M, Kosaka T, Mizuno R, et al. Increased RANKL expression is related to tumour migration and metastasis of renal cell carcinomas. J Pathol. 2009;218(4):530-9.
Hanada R, Leibbrandt A, Hanada T, Kitaoka S, Furuyashiki T, Fujihara H, et al. Central control of fever and female body temperature by RANKL/RANK. Nature. 2009;462:505-9.
Neyro Bilbao JL, Cano Sánchez A, Palacios Gil-Antuñano S. Regulación del metabolismo óseo a través del sistema RANK-RANKL-OPG. Rev Osteoporos Metab Miner. 2011;3(2):105-12.
Cooper C. Osteoporosis: disease severity and consequent fracture management. Osteoporos Int. 2010;21 Suppl 2: S425-S429.
Miller P, Papapoulos S. Osteoporosis. En: Miller P, Papapoulos S (eds.). Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Eighth Edition. Oxford, UK: John Wiley & Sons, Inc.; 2013. p. 343-533.
Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, et al. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab. 2010;95(3):1247-55.
Reid IR. Fat and Bone. Arch Biochem Biophys. 2010; 503(1):20-7.
Power ML, Schulkin J. Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins. Br J Nutr. 2008;99(5):931-40.
Schett G. Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur J Clin Invest. 2011;41(12): 1361-6.
David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, et al. Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology. 2007;148(5): 2553-62.
Driessler F, Baldock PA. Hypothalamic regulation of bone. J Mol Endocrinol. 2010;45(4):175-81.
Tsuji K, Maeda T, Kawane T, Matsunuma A, Horiuchi N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1 alpha, 25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res. 2010;25(8):1711-23.
Ferron M, Lacombe J. Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Arch Biochem Biophys. 2014;561:137-46.
Yang WH, Tsai CH, Fong YC, Huang YL, Wang SJ, Chang YS, et al. Leptin induces oncostatin M production in osteoblasts by downregulating miR-93 through the Akt signaling pathway. Int J Mol Sci. 2014;15(9):15778-90.
Reid IR. Relationships between fat and bone. Osteoporos Int. 2008;19(5):595-606.
Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun. 2005;331(2):520-6.
Luo XH, Guo LJ, Yuan LQ, Wu XP, Zhou HD, Liao EY. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res. 2006;21(10):1648-56.
Cao JJ, Sun L, Gao H. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann N Y Acad Sci. 2010;1192(1):292-7.
Rithirangsriroj K, Panyakhamlerd K, Chaikittisilpa S, Chaiwatanarat T, Taechakraichana N. Osteoporosis in different age-groups and various body mass index (BMI) ranges in women undergoing bone mass measurement at King Chulalongkorn Memorial Hospital. J Med Assoc Thai. 2012;95(5):644-9.
Premaor MO, Ensrud K, Lui L, Parker RA, Cauley J, Hillier TA, et al. Risk factors for non-vertebral fracture in obese older women. J Clin Endocrinol Metab. 2011;96(8): 2414-21.
Mirzababaci A, Mirzaei K, Khorrami-Nezhad L, Maghbooli Z, Keshavarz SA. Metabolically healthy/unhealthy components may modify bone mineral density in obese people. Arch Osteoporos. 2017;12(1):95-8.
Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr. 2006;83(1): 146-54.
Chen Y, Feng W, Wang Ch, Chang Y, Wu Ch, Zhou Y, et al. Body fat has stronger associations with bone mass density than body mass index in metabolically healthy obesity. PLOS One. 2018;13(11):e0206812.
Barbour KE, Zmuda JM, Boudreau R, Strotmeyer ES, Horwitz MJ, Evans RW, et al. The effects of adiponectin and leptin on changes in bone mineral density. Osteoporos Int. 2012;23(6):16099-710.
Kessler J, Koebnick C, Smith N, Adams A. Chilhood obesity is associated with increased risk of lower extremity fractures. Clin Orthop Relat Res. 2013;471:1199-207.
Amati F, Pennant M, Azuma K, Dubé JJ, Toledo FG, Rossi AP, et al. Lower thigh subcutaneous and higher visceral abdominal adipose tissue content both contribute to insulin resistance. Obesity. 2012;20(5):1115-7.
Bansal I, Bansal A. Relation between obesity and osteoporosis in women. Int J Med and Dent Sci. 2017;6(1):1382-5.
Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, et al. Determinants of bone mineral density in obese premenopausal women. Bone. 2011;48(4): 748-54.
Walsh JS, Henriksen DB. Feeding and Bone. Arch Biochem Biophys. 2010;503(1):11-9.
Misra M, Klibanski A. Anorexia Nervosa, Obesity and Bone Metabolism. Pediatr Endocrinol Rev. 2013;11(1): 21-33.
Howgate DJ, Graham SM, Leonidou A, Korres N, Tsiridis E, Tsapakis E. Bone metabolism in anorexia nervosa: molecular pathways and current treatment modalities. Osteoporos Int. 2013;24(2):407-21.
Sukumar D, Schlussel Y, Riedt CS, Gordon C, Stahl T, Shapses SA. Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos Int. 2011;22(2): 635-45.