2021, Number 1
Next >>
salud publica mex 2021; 63 (1)
A risk score to predict admission to the intensive care unit in patients with Covid-19: the ABC-GOALS score
Mejía-Vilet JM, Córdova-Sánchez BM, Fernández-Camargo DA, Méndez-Pérez RA, Morales-Buenrostro LE, Hernández-Gilsoul T
Language: English
References: 38
Page: 1-12
PDF size: 343.90 Kb.
ABSTRACT
Objective. To develop a score to predict the need for
intensive care unit (ICU) admission in Covid-19.
Materials
and methods. We assessed patients admitted to a
Covid-19 center in Mexico. Patients were segregated into a
group that required ICU admission, and a group that never
required ICU admission. By logistic regression, we derived
predictive models including clinical, laboratory, and imaging
findings. The ABC-GOALS was constructed and compared to
other scores.
Results. We included 329 and 240 patients in
the development and validation cohorts, respectively. Onehundred-
fifteen patients from each cohort required ICU
admission. The clinical (ABC-GOALSc), clinical+laboratory
(ABC-GOALScl), clinical+laboratory+image (ABC-GOALSclx)
models area under the curve were 0.79 (95%CI=0.74-0.83)
and 0.77 (95%CI=0.71-0.83), 0.86 (95%CI=0.82-0.90) and
0.87 (95%CI=0.83-0.92), 0.88 (95%CI=0.84-0.92) and 0.86
(95%CI=0.81-0.90), in the development and validation cohorts,
respectively. The ABC-GOALScl and ABC-GOALSclx
outperformed other Covid-19 and pneumonia predictive
scores.
Conclusion. ABC-GOALS is a tool to timely predict
the need for admission to ICU in Covid-19.
REFERENCES
Emanuel EJ, Persad G, Upshur R, Thome B, Parker M, Glickman A, et al. Fair allocation of scarce medical resources in the time of Covid-19. N Engl J Med. 2020;382(21):2049-55. https://doi.org/10.1056/NEJMsb2005114
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA. 2020;323(13):1239-42. https://doi.org/10.1001/jama.2020.2648
Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical characteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372-4. https://doi.org/10.1056/NEJMc2010419
Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson DW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA.2020;323(20):2052-9. https://doi.org/10.1001/jama.2020.6775
Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-43. https://doi.org/10.1001/jamainternmed.2020.0994
Hu L, Chen S, Fu Y, Gao Z, Long H, Wang JM, et al. Risk factors associated with clinical outcomes in 323 COVID-19 hospitalized patients in Wuhan, China. Clin Infect Dis. 2020;ciaa539. https://doi.org/10.1093/cid/ciaa539
Guan W, Ni Z, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. https://doi.org/10.1056/NEJMoa2002032
Chen R, Liang W, Jiang M, Guan W, Zhan C, Wang T, et al. Risk factors of fatal outcome in hospitalized subjects with coronavirus disease 2019 from a nationwide analysis in China. Chest. 2020;158(1):97-105. https://doi. org/10.1016/j.chest.2020.04.010
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. https://doi.org/10.1016/S0140-6736(20)30211-7
Deng G, Yin M, Chen X, Zeng F. Clinical determinants for fatality of 44,672 patients with COVID-19. Crit Care. 2020;24(1):179. https://doi. org/10.1186/s13054-020-02902-w
Zhang H, Shi T, Wu X, Zhang X, Wang K, Bean D, et al. Risk prediction for poor outcome and death in hospital in patients with COVID-19: derivation in Wuhan, China and external validation in London, UK. medRxiv [preprint]. 2020. https://doi.org/10.1101/2020.04.28.20082222
Wang K, Zuo P, Liu Y, Zhang M, Zhao X, Xie S, et al. Clinical and laboratory predictors of in-hospital mortality in patients with COVID-19: a cohort study in Wuhan, China. Clin Infect Dis. 2020;ciaa538. https://doi. org/10.1093/cid/ciaa538
Yang R, Gui X, Zhang Y, Xiong Y. The role of essential organ-based comorbidities in the prognosis of COVID-19 infection patients. Expert Rev Respir Med. 2020. https://doi.org/10.1080/17476348.2020.1761791
Zhang J, Yu M, Tong S, Liu LY, Tang LV. Predictive factors for disease progression in hospitalized patients with coronavirus disease 2019 in Wuhan, China. J Clin Virol. 2020;127:104392. https://doi.org/10.1016/j. jcv.2020.104392
Yang W, Cao Q, Qin L, Wang X, Cheng Z, Pan A, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. J Infect. 2020;80(4):388-93. https://doi.org/10.1016/j.jinf.2020.02.016
Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID- 19 outbreak in Lombardy, Italy. JAMA. 2020;323(16):1545-6. https:// doi.org/10.1001/jama.2020.4031
Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis. 1987;40(5):373-83. https://doi.org/10.1016/0021- 9681(87)90171-8
Royal College of Physicians. National Early Warning Score (NEWS) 2: Standardising the assessment of acute-illness severity in the NHS. London: RCP Press, 2017.
Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22(7):707-10. https://doi.org/10.1007/BF01709751
Lim WS, Van der Eerden MM, Laing R, Boersma WG, Karalus N, Town GI, et al. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax. 2003;58(5):377-82. https://doi.org/10.1136/thorax.58.5.377
Guo L, Wei D, Zhang X, Wu Y, Li Q, Zhou M, Qu J. Clinical features predicting mortality risk in patients with viral pneumonia: the MuLBSTA score. Front Microbiol. 2019;10:2752. https://doi.org/10.3389/ fmicb.2019.02752
Roca O, Messika J, Caralt B, García-de-Acilu M, Sztrymf B, Ricard JD, Masclans JR. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: The utility of the ROX index. J Crit Care. 2016;35:200-5. https://doi.org/10.1016/j. jcrc.2016.05.022
Ji D, Zhang D, Xu J, Chen Z, Yang T, Zhao P, et al. Prediction for progression risk in patients with COVID-19 pneumonia: the CALL score. Clin Infect Dis. 2020; ciaa414. https://doi.org/10.1093/cid/ciaa414
Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Int Med. 2020. https:// doi.org/10.1001/jamainternmed.2020.2033
Mejia-Vilet JM, Cordova-Sanchez BM, Fernandez-Camargo DA, Mendez- Perez RA, Morales-Buenrostro LE, Hernández-Gilsoul T. Supplementary material to the manuscript “A risk score to predict admission to the intensive care unit in patients with COVID-19: the ABC-GOALS score. Journal Contribution. 2020. https://doi.org/10.6084/m9.figshare.12611174
Johns Hopkins University Coronavirus Resource Center. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Baltimore: JHU, 2020 [cited Jul 3, 2020]. Available from: https://coronavirus.jhu.edu/map.html
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382:1199-207. https://doi.org/10.1056/NEJMoa2001316
Bello-Chavolla OY, Bahena-López JP, Antonio-Villa NE, Vargas-Vázquez A, González-Díaz A, Márquez-Salinas A, et al. Predicting mortality due to SARS-CoV-2: a mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico. J Clin Endocrinol Metab. 2020;105(8). https://doi.org/10.1210/clinem/dgaa346
Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, et al. Covid-19 in Critically Ill Patients in the Seattle Region: Case Series. N Engl J Med 2020;382(21):2012-22. https://doi.org/10.1056/ NEJMoa2004500
Luzi L, Radaelli MG. Influenza and obesity: its odd relationship and the lessons for COVID-19 pandemic. Acta Diabetol. 2020;57(6):759-64. https://doi.org/10.1007/s00592-020-01522-8
Dietz W, Santos-Burgoa C. Obesity and its Implications for COVID-19 Mortality. Obesity 2020;28(6):1005. https://doi.org/10.1002/oby.22818
Levy TJ, Richardson S, Coppa K, Barnaby DP, McGinn T, Becker LB, et al. Estimating survival of hospitalized COVID-19 patients from admission information. medRxiv [preprint]. 2020. https://doi. org/10.1101/2020.04.22.20075416
Mo P, Xing Y, Xiao Y, Deng L, Zhao Q, Wang H, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis. 2020;ciaa270. https://doi.org/10.1093/cid/ciaa270
Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020. https://doi.org/10.1001/ jamacardio.2020.1017
Wang D, Yin Y, Hu C, Liu X, Zhang X, Zhou S, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit Care 2020;24(1):188. https://doi.org/10.1186/s13054-020-02895-6
Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. https:// doi.org/10.1136/bmj.g7594
Pérez-Padilla JR, Vázquez-García JC. Estimation of gasometric values at different altitudes above sea level in Mexico. Rev Invest Clin. 2000;52(2):148-55
Ramirez-Sandoval JC, Castilla-Peón MF, Gotés-Palazuelos J, Vázquez- García JC, Wagner MP, Merelo-Arias CA, et al. Bicarbonate Values for Healthy Residents Living in Cities Above 1500 Meters of Altitude: A Theoretical Model and Systematic Review. High Alt Med Biol. 2016;17(2):85-92. https://doi.org/10.1089/ham.2015.0097