2020, Number 1
<< Back Next >>
AbanicoVet 2020; 10 (1)
Chemical characterization of alcoholic extract of guava leaf (Psidium guajava) and its effect as a mobility inhibitor for Escherichia coli O157:H7
Silva-Vega M, Bañuelos-Valenzuela R, Delgadillo-Ruiz L, Gallegos-Flores P, Meza-López C, Valladares-Carranza B, Echavarría-Cháirez F
Language: Spanish
References: 38
Page: 1-13
PDF size: 693.75 Kb.
ABSTRACT
The objective was to characterize and determine the mobility inhibitory effect in
Escherichia coli O157: H7
of extracts of guava leaves (
Psidium guajava). New alternatives of natural origin "plant extracts" have been
sought to eliminate colonization of pathogenic bacteria in animals and prevent contamination of meat.
Guava leaf extract (
Psidium guajava) has broad-spectrum antibacterial activity, due to the active ingredient
quercetin.
E. coli O157: H7 enterohemorrhagic, is a pathogen of great importance in public health, which
can cause hemolytic uremic syndrome, and ruminants are recognized as the main host of
E. coli O157: H7.
The extract was prepared with guava leaves in 70% ethanol, obtaining a crude extract (Extract A) and a
concentrated extract using the soxhlet equipment (Extract B). Its chemical composition was determined by
gas chromatography. Nursing ruminants with diarrheal syndrome were sampled, the samples were
transported in Stuart medium. The bacteria were isolated in Mac Conkey medium and subsequently seeded
in CHROMagar
™ 0157 medium for the identification of
E. coli O157:H7. Mobility tests of
E. coli O157: H7
were carried out in SIM medium, with guava leaf extract and as a reference, concentrations of carvacrol of
0.3, 1 and 5 mM and quercetin 205, 102 and 51 mM were used. 78
E. coli O157: H7 were identified, which
showed inhibition in mobility at different concentrations of carvacrol, in quercetin 205 mM and 102.5 mM
and in extracts A and B. It is concluded that the alcoholic extract of guava leaves and its compound in a
greater proportion (quercetin) they are effective in inhibiting the mobility of
E. coli O157 H7.
REFERENCES
BAÑUELOS-VALENZUELA R, Delgadillo-Ruiz L, Echavarría-Cháirez F, Delgadillo-Ruiz O, Meza-López C. 2018. Composición química y FTIR de extractos etanólicos de Larrea tridentata, Origanum vulgare, Artemisa ludoviciana y Ruta graveolens. Agrociencia. 52(3): 309-321. http://www.scielo.org.mx/pdf/agro/v52n3/2521-9766-agro-52-03-309.pdf
BETTELHEIM KA. 1998. Reliability of CHROMagar® O157 for the Detection of Enterohaemorrhagic Escherichia coli (EHEC) O157 but Not EHEC Belonging to Other Serogroups. Journal of Applied Microbiology. 85:425-428. https://doi.org/10.1046/j.1365- 2672.1998.853469.x
BERMÚDEZ-VÁSQUEZ MJ, Granados-Chinchilla F, Molina A. 2019. Chemical composition and antimicrobial activity of the essential oil of Psidium guajava and Cymbopogon citratus. Agronomía Mesoamericana. 30(1): 147-163. http://dx.doi.org/10.15517/am.v30i1.33758
BISWAS B, Rogers K, McLaughlin F, Daniels D, Yadav A. 2013. Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two gram-negative and gram-positive bacteria. International journal of microbiology. 2013: 1-7. https://doi.org/10.1155/2013/746165
BIRDI T, Daswani P, Brijesh S, Tetali P and Natu A. 2010. Newer insights into the mechanismof action of Psidium guajava L. leaves in infectious diarrhoea. BMC complementary and alternative medicine. 10(1): 33. https://link.springer.com/article/10.1186/1472-6882-10-33
BLANCO M, Padola NL, Krüger A, Sanz ME, Blanco JE, González EA, Dahbi G, Mora A, Bernárdez MI, Etcheverría AI, Arroyo GH, Lucchesi PMA, Parma AE, Blanco J. 2004. Virulence genes and intimin types of Shiga-toxin-producing Escherichia coli isolated from cattle and beef products in Argentina. Int Microbiol. 7:269–76. http://revistes.iec.cat/index.php/IM/article/view/9482
BOLUKAOT JY, Kock MM, Strydom KA, Mbelle NM and Ehlers MM. 2019. Molecular characteristics and genotypic diversity of enterohaemorrhagic Escherichia coli O157: H7 isolates in Gauteng region, South Africa. Science of the Total Environment. 692: 297-304. https://doi.org/10.1016/j.scitotenv.2019.07.119
BOTELHO LAB, Kraychete GB, e Silva C, Lapa J, Regis DVV, Picão RC and Bonelli RR. 2015. Widespread distribution of CTX-M and plasmid-mediated AmpC β-lactamases in Escherichia coli from Brazilian chicken meat. Memórias do Instituto Oswaldo Cruz. 110(2): 249-254. https://doi.org/10.1590/0074-02760140389
CATTOIR V, Leclercq R. 2017. Resistance to Macrolides, Lincosamides, and Streptogramins. Antimicrobial Drug Resistance (pg 269-280). Springer, Cham. https://link.springer.com/chapter/10.1007/978-3-319-46718-4_18
DURÁN M, Montero P, Marrugo Y. 2013. Extractos metanólicos de corteza de guayaba (Psidium guajava L.) y mango (Mangifera indica L.): efecto citotóxico, antihemolítico y en la morfología de membrana de eritrocitos. Revista UDCA Actualidad & Divulgación Científica. 16(2):327-334. https://repository.udca.edu.co/handle/11158/1744
ECHEMENDÍA SCE, Morón RFJ. 2004. Tintura de hojas de Psidium guajava L. enpacientes con diarrea aguda simple. Rev Cubana Plant Med. 9(3): 1-13. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962004000300008
GALLEGOS-FLORES PI, Bañuelos-Valenzuela R, Delgadillo-Ruiz L, Meza-López C y Echavarría-Cháirez F. 2019. Actividad antibacteriana de cinco compuestos terpenoides: carvacrol, limoneno, linalool, α-terpineno y timol. Tropical and Subtropical Agroecosystems. 22:241-248. https://pdfs.semanticscholar.org/c11b/a9ad9c764c58baaded8d9a5eded06c7c1513.pdf
GARCÍA BL, García GVL, Rojo DM, Sánchez GE. 2001. Plantas con propiedades antioxidantes. Revista cubana de investigaciones biomédicas. 20(3):231-235. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002001000300011
GEDDE MM, Davis DK, Huestis WH. 1997. Cytoplasmic pH and human erythrocyte shape. Biophysical journal. 72(3):1234-1246. https://www.cell.com/biophysj/pdf/S0006- 3495(97)78770-8.pdf
GIRONÉS-VILAPLANA A, Mena P, García-Viguera C, Moreno DA. 2012. A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. LWT - Food Science and Technology. 47(2): 279-286. https://doi.org/10.1016/j.lwt.2012.01.020
GOOD P. 2000. Permutation tests. A practical guide to resampling methods for testing hypotheses. Second edition. Springer-Verlag, New York. Pp. 270. https://doi.org/10.1007/978-1-4757-3235-1
GUTIERREZ ME, Janes ME, Torrico DD, Carabante KM, Prinyawiwatkul W. 2016. Assessment of the ability of five culture media for the detection of Escherichia coli O157. International Journal of Food Science & Technology, 51(8), 1910-1915. https://doi.org/10.1111/ijfs.13164
GYLES CL. 2007. Shiga toxin-producing Escherichia coli: an overview. Journal of Animal Science. 85: 45–62. https://doi.org/10.2527/jas.2006-508
IWERIEBOR BC, Iwu CJ, Obi LC, Nwodo UU, Okoh AI 2015. Multiple antibiotic resistances among Shiga toxin producing Escherichia coli O157 in feces of dairy cattle farms in Eastern Cape of South Africa. BMC microbiology. 15(1):213. https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-015-0553-y
HIRVONEN JJ, Siitonen A, Kaukoranta SS. 2012. Usability and performance of CHROMagar STEC in detection of Shiga toxin-producing Escherichia coli strains. J Clin Microbiol. 50:3586-3590. https://doi.org/10.1128/JCM.01754-12
KAPER JB, Nataro JP, Mobley HLT. 2004. Pathogenic Escherichia coli. Nat Rev Microbiol. 2:123–40. https://www.nature.com/articles/nrmicro818 KIM YB, Seo KW, Shim JB, Son SH, Noh EB, Lee Y J. 2019. Molecular characterization of antimicrobial-resistant Enterococcus faecalis and Enterococcus faecium isolated from layer parent stock. Poultry science. 98(11):5892-5899. https://doi.org/10.3382/ps/pez288
LARA DJA, Silva VM, Bañuelos VR, Delgadillo RL, Delgadillo RO. 2019. Incidencia de Escherichia coli O157: H7 en heces de rumiantes lactantes con síndrome diarreico. Revista MVZ Córdoba. 24(3): 7339-7345. https://doi.org/10.21897/rmvz.1232
LÓPEZ MA, Valbuena-Gregorio E, Quihui-Cota L, Morales-Figueroa GG, Ruiz-Cruz S, Campos-García JC, Díaz-Meza E, Pablos-Rodríguez DE. 2017. Efecto de Microemulsiones de Aceites Esenciales Sobre el Eritrocito Humano y Bacterias Patógenas. Revista mexicana de ingeniería biomédica. 38(1):247-254. http://www.rmib.mx/index.php/rmib/article/view/27
LOZOYA X, Reyes MH, Chávez MA., Martínez GMC, Soto GY and Doubova SV. 2002. Intestinalanti-spasmodic effect of a phytodrug of Psidium guajava folia in the treatment ofacute diarrheic disease. Journal of Ethnopharmacology. 83(1-2): 19-24. https://doi.org/10.1016/S0378-8741(02)00185-X
MARTÍNEZ MJ, Molina N, Boucourt E. 1997. Evaluación de la actividad antimicrobiana de Psidium guajava L. (guayaba). Revista Cubana de Plantas Medicinales. 2(1): 12-14. http://scielo.sld.cu/scielo.php?pid=S1028- 47961997000100003&script=sci_arttext&tlng=en
MEIRA NV, Holley RA, Bordin K, de Macedo RE, Luciano FB. 2017. Combination of essential oil compounds and phenolic acids against Escherichia coli O157: H7 in vitro and in dry-fermented sausage production. International journal of food microbiology. 260:59- 64. https://doi.org/10.1016/j.ijfoodmicro.2017.08.010
MILTON AAP, Agarwal RK, Priya GB, Aravind M, Athira CK, Rose L, Saminathan M, Sharma AK, Kumar A. 2018. Captive wildlife from India as carriers of Shiga toxinproducing, Enteropathogenic and Enterotoxigenic Escherichia coli. Journal of Veterinary Medical Science. 81(2): 321-327. https://doi.org/10.1292/jvms.18-0488
MOYNE AL, Sudarshana MR, Blessington T, Koike ST, Cahn MD, Harris LJ. 2011. Fate of Escherichia coli O157: H7 in field-inoculated lettuce. Food Microbiology. 28(8): 1417- 1425. https://doi.org/10.1016/j.fm.2011.02.001
NILE SH, Nile AS, Keum YS. 2017. Total phenolics, antioxidant, antitumor, and enzyme inhibitory activity of Indian medicinal and aromatic plants extracted with different extraction methods. 3 Biotech. 7(1): 1-10. https://link.springer.com/article/10.1007/s13205-017- 0706-9
PARSONS BD, Zelyas N, Berenger BM, Chui L. 2016. Detection, characterization, and typing of Shiga toxin-producing Escherichia coli. Frontiers in microbiology. 7: 1-12. https://doi.org/10.3389/fmicb.2016.00478
PESEWU GA, Cutler RR, Humber DP. 2008. Antibacterial activity of plants used in traditional medicines of Ghana with particular reference to MRSA. Journal of ethnopharmacology. 116(1): 102-111. https://doi.org/10.1016/j.jep.2007.11.005
RATTANACHAIKUNSOPON P, Phumkhachorn P. 2010. Contents and antibacterial activity of flavonoids extracted from leaves of Psidium guajava. Journal of Medicinal Plants Research. 4(5): 393-396. https://doi.org/10.5897/JMPR09.485
RODRÍGUEZ-ANGELES G. 2002. Principales características y diagnóstico de los grupos patógenos de Escherichia coli. Salud pública de México. 44: 464-475. http://www.insp.mx/salud/index.html
RODRÍGUEZ RA, Lafourcade PA, Pérez RL. 2013. Hojas de Psidium guajava L. Revista Cubana de Farmacia. 47(1): 127-135. https://www.researchgate.net/profile/Jesus_Rafael_Rodriguez_Amado/publication/2607 74883_Hojas_de_Psidium_guajava_L/links/55fae20008ae07629e07b496/Hojas-de- Psidium-guajava-L.pdf
TANG Y, Kim H, Singh AK, Aroonnual A, Bae E, Rajwa B, Bhunia AK. 2014. Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157. PLoS One. 9(8): e105272. https://doi.org/10.1371/journal.pone.0105272
VITAS AI, Naik D, Pérez-Etayo L, González D. 2018. Increased exposure to extendedspectrum β-lactamase-producing multidrug-resistant Enterobacteriaceae through the consumption of chicken and sushi products. International journal of food microbiology. 269: 80-86. https://doi.org/10.1016/j.ijfoodmicro.2018.01.026
WANG Y, Yam KL. 2018. Inhibitory effect of thymol via different modes of delivery on growth of Escherichia coli DH5α. Food Packaging and Shelf Life. 16:92-96. https://doi.org/10.1016/j.fpsl.2018.02.007
WITTUM TE, Mollenkopf DF, Daniels JB, Parkinson AE, Mathews JL, Fry PR, Abley MJ, Gebreyes WA. 2010. CTX-M–type expendedspectrum b–lactamases present in Escherichia coli from the feces of cattle in Ohio, United States. Foodborne Pathog Dis. 7:1575–9. https://doi.org/10.1089/fpd.2010.0615