medigraphic.com
SPANISH

Abanico Veterinario

ISSN 8541-3697 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

AbanicoVet 2020; 10 (1)

Effect of extrusion temperature, moisture and sunflower oil content on the functional properties and digestibility of bovine cattle feeds

Delgado E, Alvarado-González Ó, Medrano-Roldán H, Rodríguez-Miranda J, Carrete-Carreón F, Reyes-Jáquez D
Full text How to cite this article

Language: English
References: 26
Page: 1-10
PDF size: 578.78 Kb.


Key words:

Bovine cattle feed, extruded, digestibility, sunflower oil.

ABSTRACT

Preparation of extruded products with high oil content, presents a technological challenge, due oil decreases specific mechanic force but also acts as a lubricant, and forms starch-lipid complexes; thus, decreasing starch gelatinization. This research aimed to evaluate the effect of temperature, moisture, and sunflower oil content, on the extrusion process of bovine cattle feed. Two main ingredients were used for each diet: alfalfa (Medicago sativa L.), and bean (Phaseolus vulgaris L.). The obtained results showed that high temperature, moisture, and oil content, decreased bulk density, and hardness (P ‹ 0.05). Oil content-temperature interaction increased both bulk density and hardness, while moisture-oil content interaction increased (P ‹ 0.05) hardness. Optimization was performed based on the physicochemical characteristics of commercial feeds, showing that the best bean diets were obtained at 121ºC, 14% moisture content with 0% sunflower oil; 120ºC and 16% moisture content with 3.5% sunflower oil; and, 142ºC and 15% moisture content with 7% sunflower oil. Effective degradability ranged from 87.4 - 90.4% for all extruded diets; and none of them showed significant differences between bean and alfalfa (P ‹ 0.05), which opens a high potential opportunity of producing high concentrations of CLA from sunflower oil at a ruminal level.


REFERENCES

  1. ABU-GHAZALEH AA and Holmes LD. 2006. Diet Supplementation with Fish Oil and Sunflower Oils to increase Conjugated Linoleic Acid Levels in Milk Fat of Partially Grazing Dairy Cows. J.Dairy Sci. 90:2897-2904. https://doi.org/10.3168/jds.2006-684

  2. ABU-HARDAN M, Hill EH and Farhat I. 2011. Starch conversion and expansion behavior of wheat starch cooked with either palm, soybean or sunflower oils in a corating intermeshing twin-screw extruder. International Journal of Food Science and Technology. 46:268-274. https://doi.org/10.1111/j.1365-2621.2010.02473.x

  3. ANKOM. 2017. “In vitro true digestibility using the DAISY incubator”. https://www.ankom.com/sites/default/files/documentfiles/ Method_3_Invitro_D200_D200I.pdf

  4. AOAC. 2019. Official Methods of Analysis. Association of Official Analytical Chemists International. Gaithersburg, Maryland. 21st ed. Vol. I. 700 p.

  5. BYERS FM and Schelling GT. 1993. Lipids in ruminant nutrition. In: Church DC, editor. The ruminant animal: digestive, physiology and nutrition. 2nd ed. New Jersey, U.S.A: Waveland Press Inc. Pp. 298-312. ISBN 10: 0-88133-740-4. ISBN 13: 978-0- 88133-740-2.

  6. CHILLARD Y, Glasser F, Ferlay A, Bernard L, Rouel J and Doreau M. 2007. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 109:828-855. https://doi.org/10.1002/ejlt.200700080

  7. COBLENTZ WK and Hoffman PC. 2009. Effects of bale moisture and bale diameter on spontaneous heating, dry matter recovery, in vitro true digestibility, and in situ disappearance kinetics of alfalfa-orchardgrass hays. J. Dairy Sci. 92:2853- 2874. https://doi.org/10.3168/jds.2008-1921

  8. DE PILLI T, Derossi A, Talja RA, Jouppila K and Secerini C. 2011. Study of starchlipid complexes in model system and real food produced using extrusion-cooking technology. Innovate Food Science and Engineering Tech. 12:610-616. https://doi.org/10.1016/j.ifset.2011.07.011

  9. DING QB, Ainsworth P, Tucker P, Marson H. 2005. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering. 66:283-289. https://doi.org/10.1016/j.jfoodeng.2004.03.019

  10. EL-SAIDY EA, Faraouk S and Adb El-Ghany HM. 2011. Evaluation of different seed priming on seeding growth, yield and quality components in two sunflower (Helianthus annus L.) cultivars. Trends in Applied Sciences Research. 6:977-991. https://doi.org/10.3923/tasr.2011.977.991

  11. GONZÁLEZ-Valadez M, Munoz-Hernández G and Sánchez-López R. 2008. Design and evaluation of an extruder to convert crop residues to animal feed. Biosystems Engineering. 100:66-78. https://doi.org/10.1016/j.biosystemseng.2008.02.002

  12. GUJSKA E and Khan K. 1990. Effect of temperature on properties of extrudates from high starch fractions of navy, pinto and garbanzo beans. J. Food Sci. 55:466-469. https://doi.org/10.1111/j.1365-2621.1990.tb06788.x

  13. HERNÁNDEZ-Hernández E, Ávila-Orta CA, Hsiao BS, Castro-Rosas J, Gallegos- Infante JA, Morales-Castro J, Ochoa-Martínez LA, Gómez-Aldapa CA. 2011. Synchrotron X-ray scattering analysis of the interaction between corn starch and an exogenous lipid during hydrothermal treatment. Journal of Cereal Science. 54:69-75. https://doi.org/10.1016/j.jcs.2011.03.001

  14. IKPEME ECA, Osuchukwu NC and Oshiele L. 2010. Functional and sensory properties of wheat (Aestium triticium) and taro flour (Colocasia esculenta) composite bread. Afr. J. Food Sci. 4:248-253. https://academicjournals.org/journal/AJFS/articlefull- text-pdf/4AAAB0C23570

  15. INIESTRA González, José J., Ibarra Pérez, Francisco J., Gallegos Infante, José A., Rocha Guzmán, Nuria E. y González Laredo, Rubén F. Factores antinutricios y actividad antioxidante en variedades mejoradas de frijol común (Phaseolus vulgaris). Agrociencia. 2005;39(6):603-610. [fecha de Consulta 21 de Julio de 2020]. ISSN: 1405-3195. Disponible en: https://www.redalyc.org/pdf/302/30239603.pdf

  16. LIU L, Kerry JF and Kerry JP. 2006. Effect of food ingredients and selected lipids on the physical properties of extruded edible films casings. International Journal of Food Science and Technology. 41:295-302. https://doi.org/10.1111/j.1365- 2621.2005.01063.x

  17. PARIZA MW, Park Y and Cook ME. 2001. The biologically active isomers of conjugated linoleic acid. Progress in Lipid Research. 40:283-298. https://doi.org/10.1016/S0163-7827(01)00008-X

  18. PETHERICK JC. 2005. Animal welfare issues associated with extensive livestock production; the northern Australian beef cattle industry. Applied Animal Behavior Science. 92:211-234. https://doi.org/10.1016/j.applanim.2005.05.009

  19. POULSON CS, Shiman TR, Ure AL, Cornforth D and Olson KC. 2004. Conjugated linolenic acid content of beef from cattle fed diets containing high grain, CLA, or raised on forages. Livestock Production Science. 91:117-128. https://doi.org/10.1016/j.livprodsci.2004.07.012

  20. REYES-Jáquez D, Casillas F, Flores N, Andrade-González I, Solís-Soto A, Medrano- Roldan H, Carrete F, Delgado E. 2012. The effect of Glandless Cottonseed Meal Content and Process Parameters on the Functional Properties of Snack during Extrusion Cooking. Food and Nutrition Sciences. 3:1716-1725. https://doi.org/10.4236/fns.2012.312225

  21. REYES-Jáquez D, Vargas-Rodríguez J, Delgado-Licón E, Rodríguez-Miranda J, Araiza-Rosales E, Andrade-González I, Solís-Soto A And Medrano-Roldan H. 2011. Optimization of the Extrusion Process Temperature and moisture Content on the Functional Properties and in vitro Digestibility of Bovine Cattle Feed Made out of Waste Bean Flour. Journal of Animal Science Advances. 1:100-110. ISSN: 2251- 7219 https://www.researchgate.net/publication/245536642_Optimization_of_the_Extrusion _Process_Temperature_and_Moisture_Content_on_the_Functional_Properties_and _in_vitro_Digestibility_of_Bovine_Cattle_Feed_Made_out_of_Waste_Bean_Flour

  22. RODRÍGUEZ-Miranda J, Delgado-Licón E, Ramírez-Wong B, Solís-Soto A, Vera MA, Gómez-Aldapa C, Medrano-Roldán H. 2012. Effect of Moisture, Extrusion Temperature and Screw Speed on Residence Time, Specific Mechanical Energy and Psychochemical Properties of Bean Four and Soy Protein Aquaculture Feeds. Journal of Animal Production Advances. 2:65-73. ISSN: 2251-7677. https://www.researchgate.net/publication/246044402_Effect_of_Moisture_Extrusion_ Temperature_and_Screw_Speed_on_Residence_Time_Specific_Mechanical_Energ y_and_Psychochemical_Properties_of_Bean_Four_and_Soy_Protein_Aquaculture_ Feeds

  23. SERRANO X, Baucells MD, Barroeta AC and Puchal F. 1998. Effects of extruded diet on the productive performance of weaning and post-weaned calves. Animal Feed Science and Technology. 70:275–279. https://doi.org/10.1016/S0377- 8401(97)00082-5

  24. SINGH S, Gamlath S and Walkeling L. 2007. Nutritional aspects of food extrusion: a review. J. Food Sci. and Technol. 42:916-929. https://doi.org/10.1111/j.1365- 2621.2006.01309.x

  25. SOLANAS E, Castrillo C, Balcells J and Guada JA. 2004. In situ ruminal degradability and intestinal digestion of raw and extruded legume seeds and soya bean meal protein. Journal of Animal Physiology and Animal Nutrition. 89:166-171. https://doi.org/10.1111/j.1439-0396.2005.00555.x

  26. WANG WM, Klopfenstein CF and Ponte JG. 1993. Effects of twin-screw extrusion on the physical properties of dietary fiber and other components of whole wheat and wheat bran and on the baking quality of the wheat bran. Cereal Chem. 70:707-711. https://agris.fao.org/agris-search/search.do?recordID=US9434019




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

AbanicoVet. 2020;10