2020, Number 4
<< Back Next >>
Acta Ortop Mex 2020; 34 (4)
Nanotechnology applied to the transport of antibiotics in orthopedics and traumatology
Cancela-Vila N
Language: Spanish
References: 18
Page: 249-253
PDF size: 141.63 Kb.
ABSTRACT
Bone infection and implants are a real problem in orthopedics. The formation of biofilm as well as multi-existing pathogens to antibiotics, make fighting them a difficult challenge with the tools we have today. With the aim of knowing the current state of nanotechnology applied to the transport of antibiotics in traumatology and orthopedics, and their projection in the future. We conducted a bibliographic review in June 2019. While much development of the topic and work on humans is lacking, experimental studies show that nanotechnology applied to antibiotic transport promises to be an important weapon in the treatment of bone infections in the future.
REFERENCES
McLaren AC. Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections. Clin Orthop Relat Res. 2004; (427): 101-6.
Quintili M. Nanociencia y nanotecnología... un mundo pequeño. Cuadernos del Centro de Estudios en Diseño y Comunicación. Ensayos. 2012; 42: 125-55.
Leyva GG. Nanopartículas de plata: tecnología para su obtención, caracterización y actividad biológica. Investigación en Discapacidad. 2013; 2(1): 18-22.
Kose N, Çaylak R, Pek?en C, Kiremitçi A, Burukoglu D, Koparal S, et al. Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: In vivo study. Injury. 2016; 47(2): 320-4.
Zeng X, Xiong S, Zhuo S, Liu C, Miao J, Liu D, et al. Nanosilver/poly (dl-lactic-co-glycolic acid) on titanium implant surfaces for the enhancement of antibacterial properties and osteoinductivity. Int J Nanomedicine. 2019; 14: 1849-63.
van Hengel IAJ, Riool M, Fratila-Apachitei LE, Witte-Bouma J, Farrell E, Zadpoor AA, et al. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials. 2017; 140: 1-15.
Shen SC, Ng WK, Dong YC, Ng J, Tan RB. Nanostructured material formulated acrylic bone cements with enhanced drug release. Mater Sci Eng C Mater Biol Appl. 2016; 58: 233-41.
Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004; 350(14): 1422-9.
Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002; 15(2): 167-93.
Cobo J, Del Pozo JL. Prosthetic joint infection: diagnosis and management. Expert Rev Anti Infect Ther. 2011; 9(9): 787-802.
Batoni G, Maisetta G, Esin S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim Biophys Acta. 2016; 1858(5): 1044-60.
Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK. Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng H. 2014; 228(10): 1083-99.
Carli AV, Bhimani S, Yang X, Shirley MB, de Mesy Bentley KL, Ross FP, et al. Quantification of peri-implant bacterial load and in vivo biofilm formation in an innovative, clinically representative mouse model of periprosthetic joint infection. J Bone Joint Surg Am. 2017; 99(6): e25.
Hendriks JG, van Horn JR, van der Mei HC, Busscher HJ. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials. 2004; 25(3): 545-56.
Kumar TS, Madhumathi K. Antibiotic delivery by nanobioceramics. Ther Deliv. 2016; 7(8): 573-88.
Yang L, Sheldon BW, Webster TJ. Nanophase ceramics for improved drug delivery: current opportunities and challenges. Am Ceram Soc Bull. 2010; 89(2): 24-31.
Verron E, Khairoun I, Guicheux J, Bouler JM. Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today. 2010; 15(13-14): 547-52.
Al Thaher Y, Perni S, Prokopovich P. Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material. Adv Colloid Interface Sci. 2017; 249: 234-47.