2020, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2020; 23 (1)
Evaluation of acute toxicity and chemical composition of refined oil Moringa oleifera cultivated in Mexico
Pérez-Pérez V, Alamilla-Beltrán L, Jiménez-Martínez C, Pereyra-Castro SC, Ortiz-Moreno A, Plazola-Jacinto CP, Camacho-Díaz BH, Hernández OM
Language: English
References: 37
Page: 1-9
PDF size: 631.35 Kb.
ABSTRACT
The oil obtained from
Moringa oleifera seeds is mainly composed of oleic acid and in less proportion by linoleic and α-linolenic
acids. It also contains phospholipids and other minority components, like enzymes, alkaloids, and glycosinolates some of which
can generate undesirable characteristics and toxicity; therefore, refining processes are recommended for their removal. The aim
of this work was to evaluate the effect of chemical refining on acute toxicity, fatty acid composition, and physicochemical
properties, and of
M. oleifera seed oil obtained from a Mexican variety. The oil was extracted by mechanical pressing of the
seeds and then submitted to chemical refining. The crude and refined oils were characterized by determining the following
parameters: acute toxicity in a murine model, fatty acid profile; iodine, saponification, and peroxide indexes; titratable acidity;
and antioxidant capacity. Results showed that the
M. oleifera seed oil did not present acute toxicity in the range of 300-2,000
mg/kg; therefore, could be used for human nutrition. The refining process did not have a significant effect (p ‹ 0.05) on the
content of oleic (69%), linoleic (0.74%), and α-linolenic (1.97%) acids. After the refining process, the iodine and saponification
indexes increased. In contrast, the peroxide index, acidity, β-carotene content, and antioxidant capacity decreased.
REFERENCES
Al-Anizi, A. A., Hellyer, M. T. & Zhang, D. (2014). Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter. Water Res., 56, 77–87. https://doi.org/10.1016/j.watres.2014.02.045
Al-Said, M. S., Mothana, R. A., Al-Yahya, M. A., Al-Blowi, A. S., Al-Sohaibani, M., Ahmed, A. F. & Rafatullah, S. (2012). Edible oils for liver protection: Hepatoprotective potentiality of Moringa oleifera seed oil against chemicalinduced hepatitis in rats. J. Food Sci., 77, T124–T130. https://doi.org/10.1111/j.1750-3841.2012.02698.x
Allalout, A., Krichène, D., Methenni, K., Taamalli, A., Oueslati, I., Daoud, D. & Zarrouk, M. (2009). Characterization of virgin olive oil from Super Intensive Spanish and Greek varieties grown in northern Tunisia. Sci. Hortic., 120, 77– 83. https://doi.org/10.1016/j.scienta.2008.10.006
Anwar, F., Zafar, S. N. & Rashid, U. (2006). Characterization of Moringa oleifera seed oil from drought and irrigated regions of Punjab, Pakistan. Grasas y Aceites, 57, 160– 168. https://doi.org/10.3989/gya.2006.v57.i2.32
AOCS (1997) Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th edn., edited by D. Firestone, American Oil Chemists’ Society, Champaign, IL,USA.
AOCS (2005). Official methods and recommended practices of the AOCS. 6th Ed. AOCS, Champaign, IL, USA.
Barros, L., Ferreira, M. J., Queirós, B., Ferreira, I. C. F. R. & Baptista, P. (2007). Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and theirantioxidant activities. Food Chem., 103, 413–419. https://doi.org/10.1016/j.foodchem.2006.07.038
Bhutada, P. R., Jadhav, A.J., Pinjari, D. V., Nemade, P. R. & Jain, R. D. (2016). Solvent assisted extraction of oil from Moringa oleifera Lam. seeds. Ind. Crops Prod., 82, 74– 80. https://doi.org/10.1016/j.indcrop.2015.12.004
Boukandoul, S., Casal, S., Cruz, R., Pinho, C. & Zaidi, F. (2017). Algerian Moringa oleifera whole seeds and kernels oils: Characterization, oxidative stability, and antioxidant capacity. Eur. J. Lipid Sci. Tech., 119, 1–11. https://doi.org/10.1002/ejlt.201600410
Brand-Williams, W., Cuvelier, M. E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Tech., 28(1), 25-30.
Cater, N. B. & Denke, M. A. (2001). Behenic acid is a cholesterol-raising saturated fatty acid in humans. Am. J. Clin. Nutr., 73, 41–44. https://doi.org/10.1093/ ajcn/73.1.41
Chiou, A. & Kalogeropoulos, N. (2017). Virgin Olive Oil as Frying Oil. Comp. Rev. Foods Sci. Food F., 16, 632–646. https://doi.org/10.1111/1541-4337.12268
Chivapat, S., Sincharoenpokai, P., Suppajariyawat, P., Rungsipipat, A., Phattarapornchaiwat, S. & Chantarateptawan, V. (2012). Safety evaluations of ethanolic extract of Moringa oleifera Lam. seed in experimental animals. Thai J. Vet. Med., 42(3), 343-352.
Crexi, V. T., Monte, M. L., Soares, L. A. de S. & Pinto, L. A. A. (2010). Production and refinement of oil from carp (Cyprinus carpio) viscera. Food Chem., 119, 945–950.
Durmaz, G. & Gökmen, V. (2019). Effect of refining on bioactive composition and oxidative stability of hazelnut oil. Food Res. Int. 116, 586–591. https://doi.org/10.1016/j. foodchem.2009.07.050
Eilander, A., Harika, R. K. & Zock, P. L. (2015). Intake and sources of dietary fatty acids in Europe: Are current population intakes of fats aligned with dietary recommendations?. Eur. J. Lipid Sci. Tech., 117, 1370– 1377. https://doi.org/10.1002/ejlt.201400513
FAO/WHO (2015). Norma para Grasas y Aceites Comestibles no Regulados por Normas Individuales (CODEX STAN 19-1981). Codex Alimentarius. Normas Internacionales de los alimentos. http://www.fao.org/input/download/ standards/74/CXS_019s_2015.pdf
Gupta, M. K. (2017). Practical guide to vegetable oil processing. Champaign, IL, USA: AOCS Press.
Ilesanmi, J. O., Gungula, D. T. & Nadro, M. S. (2017). Acute toxicity evaluation of mixture of neem (Azadirachta indica) and moringa (Moringa oleifera) seed oils in rats. Afr. Food Sci., 11(11), 369-375. DOI: 10.5897/ AJFS2017.1619
Lalas, S. & Tsaknis, J. (2002). Characterization of Moringa oleifera Seed Oil Variety “Periyakulam 1.” J. Food Compos Anal, 15, 65–77. DOI:10.1006/jfca.2001.1042
Leone, A., Spada, A., Battezzati, A., Schiraldi, A., Aristil, J. & Bertoli, S. (2016). Moringa oleifera seeds and oil: Characteristics and uses for human health. Int. J. Mol. Sci., 17, 1–14. https://doi.org/10.3390/ijms17122141
Mensink, R. P., Zock, P. L., Kester, A. D. M. & Katan, M. B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr., 77, 1146–1155. https://doi.org/10.1093/ajcn/77.5.1146
OECD 423 (2001). Guidelines for the testing of chemicals. Acute oral toxicity-Fixed-dose procedure. Animals. doi. org/10.1787/20745788.
Ogbunugafor, H. A., Eneh, F. U., Ozumba, A. N., Igwo- Ezikpe, M. N., Okpuzor, J., Igwilo, I. O., Adenekan, S. O. & Onyekwelu, O. A. (2011). Physico-chemical and antioxidant properties of Moringa oleifera seed oil. Pak J. Nutr., 10, 409–414.
Orsavova, J., Misurcova, L., Vavra Ambrozova, J., Vicha, R. & Mlcek, J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci., 16, 12871–12890. https:// doi.org/10.3390/ijms160612871
Rodrigues, N., Casal, S., Peres, A. M., Baptista, P., Bento, A., Martín, H., Asensio-S.-Manzanera, M. C. & Pereira, J. A. (2018). Effect of olive trees density on the quality and composition of olive oil from cv. Arbequina. Sci. Hortic., 238, 222–233. https://doi.org/10.1016/j. scienta.2018.04.059
Rodríguez-Carpena, J. G., Morcuende, D. & Estévez, M. (2012). Avocado, sunflower and olive oils as replacers of pork back-fat in burger patties: Effect on lipid composition, oxidative stability and quality traits. Meat Sci., 90, 106– 115. https://doi.org/10.1016/j.meatsci.2011.06.007
Ruttarattanamongkol, K., Siebenhandl-Ehn, S., Schreiner, M. & Petrasch, A. M. (2014). Pilot-scale supercritical carbon dioxide extraction, physico-chemical properties and profile characterization of Moringa oleifera seed oil in comparison with conventional extraction methods. Ind. Crops Prod., 58, 68–77. https://doi.org/10.1016/j. indcrop.2014.03.020
Saini, R. K. & Keum, Y. (2018). Omega-3 and omega-6 polyunsaturated fatty acids : Dietary sources , metabolism , and significance - A review. Life Sci., 203, 255–267. https://doi.org/10.1016/j.lfs.2018.04.049
Sánchez-Machado, D. I., López-Cervantes, J., Núñez- Gastélum, J. A., Servín De La Mora-López, G., López- Hernández, J. & Paseiro-Losada, P. (2015). Effect of the refining process on Moringa oleifera seed oil quality. Food Chem., 187, 53–57. https://doi.org/10.1016/j. foodchem.2015.04.031
Siano, F., Straccia, M. C., Paolucci, M., Fasulo, G., Boscaino, F. & Volpe, M. G. (2016). Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. J. Sci. Food Agric., 96, 1730–1735. https://doi.org/10.1002/jsfa.7279
Srivastava, S. & Bhargava, A. (2012). Functional foods and nutraceuticals, Biotechnology: New Ideas, New Developments (A Textbook of Modern Technology). New York , USA: Springer.
Sulaiman, H. A., Ahmad, E. E. M., Mariod, A. A., Mathäus, B. & Salaheldeen, M. (2017). Effect of pretreatment on the proximate composition, physicochemical characteristics and stability of Moringa peregrina oil. Grasas y Aceites, 68 (4), e227. https://doi.org/10.3989/gya.0444171
Ukwueze, C. K., Okogwu, O. I., Ebem, E. C., Nwonumara, G. N. & Nwodo, J. N. (2019). Evaluation of the Influence of Geographical Location on Phytochemical Composition of Moringa oleifera Seeds. World Appl. Sci. J., 37 (3), 196-201.
Vaisali, C., Charanyaa, S., Belur, P. D. & Regupathi, I. (2015). Refining of edible oils: A critical appraisal of current and potential technologies. Int. J. Food Sci. Tech., 50, 13–23. https://doi.org/10.1111/ijfs.12657
Zock, P. L., De Vries, J. H. M. & Katan, M. B. (1994). Impact of myristic acid versus palmitic acid on serum lipid and lipoprotein levels in healthy women and men. Arterioscler Thromb., 14, 567–575. DOI: 10.1161/01.atv.14.4.567
Zulkurnain, M., Lai, O. M., Latip, R. A., Nehdi, I. A., Ling, T. C. & Tan, C. P. (2012). The effects of physical refining on the formation of 3-monochloropropane-1, 2-diol esters in relation to palm oil minor components. Food Chem., 135, 799–805. https://doi.org/10.1016/j. foodchem.2012.04.144