2020, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2020; 23 (1)
Identification of microorganisms isolated from agricultural soils with the capacity to tolerate 2.4-D and malation
Rosado-Flores MF, González-Prieto JM, Mireles-Martínez M, Torres-Ortega JA, Rosas-García NM, Villegas-Mendoza JM
Language: Spanish
References: 53
Page: 1-9
PDF size: 228.56 Kb.
ABSTRACT
In the present study, the microbial diversity was analyzed in agricultural soils from Río Bravo city and Cuauhtémoc
Station, Tamp., and the surroundings of the city of Dolores Hidalgo, Guanajuato. Microorganisms isolation and
tolerance tests were conducted preselectively using 2,4-D and malathion. Microbial identification was conducted by
16S gen amplification in bacteria and ITS region in fungi. The bacterial genus
Pseudomonas, and the fungal genus
Penicillium were the most abundant in the analyzed samples.
Pseudomonas aeruginosa, Stenotrophomonas pavanii
and
Acinetobacter lactucae grew at a concentration› 2.0 g L
-1 of 2,4-D and › 1.0 g L
-1 of malathion.
Fusarium sp.
grew at 2.0 g L
-1 of malathion and 0.9 g L
-1 of 2,4-D herbicide, and
Talaromyces variabilis tolerated up to 3.1 g L
-1
of malathion. There are no reports of tolerance for
S. pavanii, A. Lactucae, and
T. variabilis to these pesticides so far.
Therefore, the semicroorganisms may have the potential to be used in soil bioremediation techniques.
REFERENCES
Abo-Amer, A. (2007). Involvement of chromosomally-encoded genes in malathion utilization by Pseudomonas aeruginosa AA112. Acta microbiologica etimmunologica Hungarica, 54 (3), 261-277. DOI: 10.1556/AMicr.54.2007.3.3.
Adams, G. O., Fufeyin, P. T., Okoro, S. E., & Ehinomen, I. (2015). Bioremediation, biostimulation and bioaugmention: a review. International Journal of Environmental Bioremediation & Biodegradation, 3 (1): 28-39. DOI: 10.12691/ijebb-3-1-5.
Ahemad, M. & Khan, M. S. (2011). Assessment of pesticidetolerance and functional diversity of bacterial strains isolated from rhizospheres of different crops. Insight Microbiol., 1, 8-19. DOI: 10.5567/IMICRO-IK.2011.8.19.
Arshad, A. M. & Aishatul, B. (2015). Aspergillus niger—a novel heavy metal bio-absorbent and pesticide tolerant fungus. Res. J. Chem. Environ., 19, 57-66.
Barnes, N. M. Khodse, V. B. Lotlikar, N. P. Meena, R. M. & Damare, S. R. (2018). Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India. 3 Biotech,8, 1-21. DOI: 10.1007/s13205-017-1043-8.
Barragán-Huerta, B. E., Costa-Pérez, C., Peralta-Cruz, J., Barrera-Cortés, J., Esparza-García, F. & Rodríguez- Vázquez, R. (2007). Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. International Biodeterioration & Biodegradation, 59 (3), 239-244. DOI. org/10.1016/j.ibiod.2006.11.001.
Biswas, K. (2015). Biological agents of bioremediation: a concise review. Frontiers in Environmental Microbiology, 1 (3), 39-43. DOI: 10.11648/j.fem.20150103.11.
Botero, L. R., Mougin, C., Peñuela, G. & Barriuso, E. (2017). Formation of 2, 4-D bound residues in soils: New insights into microbial metabolism. Science of the Total Environment, 584, 715-722. DOI.org/10.1016/j.scitotenv.2017.01.105.
Brenner, D. J., Krieg, N. R., Staley, J. T. & Garrity, G. M. (2005). Bergey’s Manual of Systematic Bacteriology, 2nd. 2.
Chakrabarty, A. M. (2017). Biodegradation and Detoxification of Environmental Pollutants. CRC Press. 31 p.
Chaudhry, G. R. & Huang, G. H. (1988). Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2, 4-dichlorophenoxyacetate. Journal of bacteriology, 170 (9), 3897-3902. DOI: 10.1128/jb.170.9.3897-3902.1988.
Chen, S., Yang, L., Hu, M. & Liu, J. (2011). Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Applied microbiology and biotechnology, 90 (2), 755-767. DOI: 10.1007/s00253- 010-3035-z.
Deng, S., Chen, Y., Wang, D., Shi, T., Wu, X., Ma, X. & Li, Q. X. (2015). Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. Journal of hazardous materials, 297, 17-24. DOI: 10.1016/j. jhazmat.2015.04.052.
Donnelly, P. K., Entry, J. A. & Crawford, D. L. (1993). Degradation of atrazine and 2, 4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl. Environ. Microbiol., 59 (8), 2642-2647. DOI: 10.1080/03601230701735227.
Drouin, P., Sellami, M., Prevost, D., Fortin, J. & Antoun, H. (2010). Tolerance to agricultural pesticides of strains belonging to four genera of Rhizobiaceae. Journal of Environmental Science and Health Part B, 45 (8), 757-765. DOI.org/10.1080/03601234.2010.515168.
Dubey, K. K. & Fulekar, M. H. (2012). Chlorpyrifos bioremediation in Pennisetum rhizosphere by a novel potential degrader Stenotrophomonas maltophilia MHF ENV20. World Journal of Microbiology and Biotechnology, 28 (4), 1715-1725. DOI: 10.1007/s11274- 011-0982-1.
Feng, F., Ge, J., Li, Y., He, S., Zhong, J., Liu, X. & Yu, X. (2017). Enhanced degradation of chlorpyrifos in rice (Oryza sativa L.) by five strains of endophytic bacteria and their plant growth promotional ability. Chemosphere, 184, 505-513. DOI: 10.1016/j.chemosphere.2017.05.178.
Harms, H., Schlosser, D. & Wick, L. Y. (2011). Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9 (3), 177. DOI:10.1038/nrmicro2519.
Huang, Y., Zhao, X., & Luan, S. (2007). Uptake and biodegradation of DDT by 4 ectomycorrhizal fungi. Science of the Total Environment, 385 (1-3): 235-241. DOI: 10.1016/j.scitotenv.2007.04.023.
Ishag, A. E. S. A., Abdelbagi, A. O., Hammad, A. M. A., Elsheikh, E. A. E., Elsaid, O. E. & Hur, J. H. (2017). Biodegradation of endosulfan and pendimethalin by three strains of bacteria isolated from pesticides-polluted soils in the Sudan. Applied Biological Chemistry, 60 (3), 287-297. DOI.org/10.1007/ s13765-017-0281-0.
Islas-Pelcastre, M., Villagómez-Ibarra, J. R., Madariaga- Navarrete, A., Castros-Rosas, J., González-Ramírez C. A. & Acevedo-Sandoval, O. A. (2013). Bioremediation perspectives using autochthonous speceies of Trichoderma sp. For degradation of atrazine in agricultural soil from the Tulancingo Valley, Hidalgo, Mexico. Tropical and Subtropical Agroecosystems, 16(2). 265-276.
Mao, H., Liu, H., Gao, Z., Su, T. & Wang, Z. (2015). Biodegradation of poly (butylene succinate) by Fusarium sp. FS1301 and purification and characterization of poly (butylene succinate) depolymerase. Polymer degradation and stability, 114, 1-7. DOI.org/10.1016/j. polymdegradstab.2015.01.025.
Maheshwari, R., Singh, U., Singh, P., Singh, N., Lal, B. & Rani, B. (2014). To decontaminate wastewater employing bioremediation technologies. Journal of Advanced Scientific Research, 5 (2): 7-15.
Meharg, A. A., Cairney, J. W. & Maguire, N. (1997). Mineralization of 2, 4-dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere, 34 (12), 2495-2504. DOI.org/10.1016/ S0045-6535(97)00005-2.
Mirgain, I., Green, G. A. & Monteil, H. (1993). Degradation of atrazine in laboratory microcosms: isolation and identification of the biodegrading bacteria. Environmental Toxicology and Chemistry: An International Journal, 12 (9), 1627-1634. DOI.org/10.1002/etc.5620120911.
Mohiddin, F. A. & Khan, M. R. (2013). Tolerance of fungal and bacterial biocontrol agents to six pesticides commonly used in the control of soil borne plant pathogens. African Journal of Agricultural, 8 (43), 5272-5275. DOI: 10.5897/ AJAR11.677.
Mori, T., Wang, J., Tanaka, Y., Nagai, K., Kawagishi, H. & Hirai, H. (2017). Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus Phanerochaete sordida. Journal of hazardous materials, 321, 586-590. DOI: 10.1016/j.jhazmat.2016.09.049.
Motosugi, K. & Soda, K. (1983). Microbial degradation of synthetic organochlorine compounds. Cellular and Molecular Life Sciences, 39 (11), 1214-1220. DOI: 10.1007/ BF01990358.
Mousawi, A. N. M. (2005). Study of bacterial resistance to organophosphorous pesticides in Iran. Journal of Environmental Health Science & Engineering, 2 (3), 207-211.
Nykiel-Szymańska, J., Stolarek, P. & Bernat, P. (2018). Elimination and detoxification of 2, 4-D by Umbelopsis isabellina with the involvement of cytochrome P450. Environmental Science and Pollution Research, 25 (3), 2738-2743. DOI: 10.1007/s11356-017-0571-4.
Ortíz, I., Velasco, A., Le Borgne, S. & Revah, S. (2013). Biodegradation of DDT by stimulation of indigenous microbial populations in soil with cosubstrates. Biodegradation, 24 (2), 215-225. DOI: 10.1007/s10532- 012-9578-1.
Ortiz-Hernández, M. L., Monterrosas-Brisson, M., Yanez-Ocampo, G. & Sánchez-Salinas, E. (2001). Biodegradation of methyl-parathion by bacteria isolated of agricultural soil. Revista Internacional de Contaminación Ambiental, 17 (3), 147-155.
Ortiz-Hernández, M. L., Sánchez-Salinas, E., Olvera-Velona, A. & Folch-Mallol, J. L. (2011). Pesticides in the environment: impacts and its biodegradation as a strategy for residues treatment. In Pesticides-formulations, effects, fate. Intech. Open, 551-574. DOI: 10.5772/1004.
Ortiz-Hernández, M. L. & Sánchez-Salinas, E. (2010). Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Revista internacional de contaminación ambiental, 26 (1), 27-38.
Panek, J. & Frąc, M. (2018). Development of a qPCR assay for the detection of heat-resistant Talaromyce sflavus. International journal of food microbiology, 270, 44-51. DOI.org/10.1016/j.ijfoodmicro.2018.02.010.
Peter, L., Gajendiran, A., Mani, D., Nagaraj, S. & Abraham, J. (2015). Mineralization of malathion by Fusarium oxysporum strain JASA1 isolated from sugarcane fields. Environmental Progress & Sustainable Energy, 34 (1), 112-116. DOI: 10.1002/ep.11970.
Potin, O., Rafin, C. & Veignie, E. (2004). Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)- contaminated soil by filamentous fungi isolated from the soil. International Biodeterioration & Biodegradation, 54 (1), 45-52. DOI: 10.1016/j.ibiod.2004.01.003.
Reader, U. & Broda, P. (1985). Rapid preparation of DNA from filamentous fungi. Letter Applied Microbiology, 1, 17-20. DOI.org/10.1111/j.1472-765X.1985.tb01479.x.
Robles-González, I., Ríos-Leal, E., Ferrera-Cerrato, R., Esparza- García, F., Rinderkenecht-Seijas, N. & Poggi-Varaldo, H. M. (2006). Bioremediation of a mineral soil with high contents of clay and organic matter contaminated with herbicide 2, 4-dichlorophenoxyacetic acid using slurry bioreactors: effect of electron acceptor and supplementation with an organic carbon source. Process Biochemistry, 41 (9), 1951-1960. DOI.org/10.1016/j.procbio.2006.04.004.
Saafan, A. E., Azmy, A. F., Amin, M. A., Ahmed, S. H. & Essam, T. M. (2016). Isolation and characterization of two malathion degrading Pseudomonas sp. in Egypt. African Journal of Biotechnology, 15 (31), 1661-1672. DOI: 10.5897/AJB2016.15273.
Sethunathan, N. & Yoshida, T. (1973). A Flavobacterium sp. that degrades diazinonand parathion. Canadian Journal of Microbiology, 19 (7), 873-875. DOI: 10.1139/m73-138.
Shafiani, S. & Malik, A. (2003). Tolerance of pesticides and antibiotic resistance in bacteria isolated from wastewater-irrigated soil. World Journal of Microbiology and Biotechnology, 19 (9), 897-901. DOI.org/10.1023/ B:WIBI.0000007290.94694.4f.
Shukla, K. P., Singh, N. K., & Sharma, S. (2010). Bioremediation: developments, current practices and perspectives. Genet. Eng. Biotechnol. J., 3: 1-20.
Singh, P., Suri, C. R. & Cameotra, S. S. (2004). Isolation of a member of Acinetobacter species involved in atrazine degradation. Biochemical and biophysical research communications, 317 (3), 697-702. DOI: 10.1016/j. bbrc.2004.03.112.
Smejkal, C. W., Seymour, F. A., Burton, S. K. & Lappin- Scott, H. M. (2003). Characterization of bacterial cultures enriched on the chlorophenoxyalkanoic acid herbicides 4-(2, 4-dichlorophenoxy) butyric acid and 4-(4-chloro- 2-methylphenoxy) butyric acid. Journal of Industrial Microbiology and Biotechnology, 30 (9), 561-567. DOI: 10.1007/s10295-003-0086-5.
Wang, B., Liu, W., Liu, X., Franks, A. E. Teng, Y. & Luo, Y. (2017). Comparative analysis of microbial communities during enrichment and isolation of DDT-degrading bacteria by culture-dependent and-independent methods. Science of the Total Environment, 590, 297-303. DOI: 10.1016/j. scitotenv.2017.03.004.
Wei, S., Xue-na, Z., Hai-bin, J., Sheng-dong, F., Zhin-xin, Y., Ou-ya, Z., Yu-ling, L. (2017). Effective remediation of aged HMW-PAHs polluted agricultural soil by the combination of Fusarium sp. And smooth bromegrass (Bromus inermis leyss). Journal of integratiev agriculture, 16(1). 199-209. DOI: 10.1016/S2095-3119(16)61373-4.
Weisburg, W., Barns, S. M., Pelletier, D. A. & Lane, D. J. (1991). 16S Ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2). 697-703. DOI: 10.1128/ jb.173.2.697-703.1991.
White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, Academic Press, New York, 315-322. DOI:10.1016/b978-0-12-372180-8.50042-1.
Xia, Z. Y., Zhang, L., Zhao, Y., Yan, X., Li, S. P., Gu, T. & Jiang, J. D. (2017). Biodegradation of the herbicide 2, 4-dichlorophenoxyacetic acid by a new isolated strain of Achromobacter sp. LZ35. Current microbiology, 74 (2), 193-202. DOI: 10.1007/s00284-016-1173-y.
Yadav, J. S. & Reddy, C. A. (1993). Mineralization of 2, 4-dichlorophenoxyacetic acid (2, 4-D) and mixtures of 2, 4-D and 2, 4, 5-trichlorophenoxyacetic acid by Phanerochaete chrysosporium. Appl. Environ. Microbiol., 59 (9), 2904- 2908. DOI: 10.1128/AEM.59.9.2904-2908.1993.
Yamashita, S., Nakagawa, H., Sakaguchi, T., Arima, T. H. & Kikoku, Y. (2018). Design of a species‐specific PCR method for the detection of the heat-resistant fungi Talaromyces macrospores and Talaromyces trachyspermus. Letters in applied microbiology, 66 (1), 86-92. DOI: 10.1111/ lam.12818.
Yao, L., Jia, X., Zhao, J., Cao, Q., Xie, X., Yu, L. & Tao, Q. (2015). Degradation of the herbicide dicamba by two sphingomonads via different O-demethylation mechanisms. International Biodeterioration & Biodegradation, 104, 324-332. DOI.org/10.1016/j.ibiod.2015.06.016.