2020, Number 2
<< Back Next >>
Arch Neurocien 2020; 25 (2)
Metabolic síndrome and Parkinson’s disease
Gómez-Chavarín M, Morales-Gómez MR
Language: Spanish
References: 99
Page: 34-44
PDF size: 367.24 Kb.
ABSTRACT
Metabolic syndrome is becoming commoner due to a rise in obesity rates among adults.
Generally speaking, a person with metabolic syndrome is twice as likely to develop
cardiovascular disease and five times as likely to develop diabetes as someone without
metabolic syndrome. Increasing oxidative stress in metabolic syndrome and Parkinson’s
disease is mentioned in the comprehensive articles; however, the system review about clear
relation between metabolic syndrome and Parkinson’s disease is deficient. In this review, we
will focus on the analysis that the metabolic syndrome may be a risk factor for Parkinson’s
disease and the preventions that reduce the incident of Parkinson’s disease by regulating the
oxidative stress.
REFERENCES
Rtveladze K, Marsh T, Barquera S, Sanchez Romero LM, Levy D, Melendez G, Webber L, Kilpi F, McPherson K, Brown M. Obesity prevalence in Mexico: impact on health and economic burden. Public Health Nutr. 2014; 17(1): 233-9. DOI: 10.1017/S1368980013000086
Abbott RD, Ross GW, White LR, et al. Midlife adiposity and the future risk of Parkinson’s disease. Neurology. 2002; 59(7):1051–57 doi: 10.1212/wnl.59.7.1051
Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry CP and Yaffe K. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. British Medical Journal. 2005; 330(7504):1360–1362. doi: 10.1136/bmj.38446.466238.E0
Hu G, Jousilahti P, Nissinen A, Antikainen R, Kivipelto M and J. Tuomilehto. Body mass index and the risk of Parkinson disease. Neurol. 2006; 67(11):1955–9. DOI: 10.1212/01.wnl.0000247052.18422.e5
Morris JK, Bomhoff GL, Stanford JA and Geiger PC. Neurodegeneration in an animal model of Parkinson’s disease is exacerbated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol. 2010; 299(4): R1082–R1090. DOI: 10.1152/ ajpregu.00449.2010
Choi J Y, Jang EH, Park CS, and Kang JH. Enhanced susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in high-fat diet-induced obesity. Free Radic Biol Med. 2005; 38(6): 806–16. DOI: 10.1016/j. freeradbiomed.2004.12.008
Cano P, Cardinali DP, Ríos-Lugo M J, Fernandez-Mateos MP, Reyes-Toso CF and Esquifino AI. Effect of a high fat diet on 24-hour pattern of circulating adipocytokines in rats. Obesity. 2009; 17(10):1866–71. DOI: 10.1038/oby.2009.200
Gupte AA, Bomhoff GL, Swerdlow R H and Geiger PC. Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes. 2009; 58(3):567–578. DOI: 10.2337/db08-1070
Uranga RM, Bruce-Keller A J, Morris CD, et al. Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J Neurochem. 2010;114(2);344–361. DOI: 10.1111/j.1471-4159.2010.06803.x
Tsuruta R, Fujita M, Ono T, et al. Hyperglycemia enhances excessive superoxide anion radical generation, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats. Brain Res. 2009; 1309:155–163. DOI: 10.1016/j.brainres.2009.10.065
Obrosova IG, Drel VR, Pacher P, et al. Oxidative-nitrosative stress and poly (ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes. 2005; 54(12):3435–3441. DOI: 10.2337/diabetes.54.12.3435
Szabó C. Multiple pathways of peroxynitrite cytotoxicity. Toxicolgy Letters. 2003;140-141: 105–112. DOI: 10.1016/ s0378-4274(02)00507-6
Vincent AM, Edwards JL, et al. The antioxidant response as a drug target in diabetic neuropathy. Curr Drug Targets. 2008; 9(1):94–100. DOI: 10.2174/138945008783431754
Allen DA, Yaqoob MM and Harwood SM. Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications. J Nutr Biochem. 2005; 16(12):705–713. https://doi.org/10.1016/j.jnutbio.2005.06.007
Tomlinson DR and Gardiner NJ. Glucose neurotoxicity. Nat Rev Neurosci. 2008;9(1):36–45. DOI: 10.1038/nrn2294
Hu G, Jousilahti P, Bidel S, Antikainen R and Tuomilehto J. Type 2 diabetes and the risk of Parkinson’s disease. Diabetes Care. 2007;30(4):842–7. DOI: 10.2337/dc06-2011
Mercer LD, Kelly BL, Horne MK and Beart PM. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol. 2005; 69(2): 339–345. DOI: 10.1016/j.bcp.2004.09.018
Pradhan A D, Manson JE, Rifai N, Burin JE and Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001; 286(3):327–334. DOI: 10.1001/jama.286.3.327
Scigliano G, Musicco M, Soliveri P, Piccolo I, Ronchetti G and Girotti F. Reduced risk factors for vascular disorders in Parkinson disease patients: a case-control study. Stroke. 2006; 37(5): 1184–8. DOI: 10.1161/01. STR.0000217384.03237.9c
Morano A, Jimenez-Jimenez F J, Molina JA and Antolin MA. Risk-factors for Parkinson’s disease: case-control study in the province of Caceres, Spain. Act Neurol Scand. 1994; 89(3):164–170. https://doi.org/10.1111/j.1600-0404.1994.tb01655.x
Simon KC, Chen H, Schwarzschild M and Ascherio A. Hypertension, hypercholesterolemia, diabetes, and risk of Parkinson disease. Neurol. 2007; 69(17):1688–1695. DOI: 10.1212/01.wnl.0000271883.45010.8a
Woo KS, Chook P, Lolin YI, et al. Hyperhomocyst(e)inemia is a risk factor for arterial endothelial dysfunction in humans. Circulation. 1997; 96:2542–2544. DOI: 10.1161/01.cir.96.8.2542
Kruman II, Culmsee C, Chan SL, et al. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci. 2000; 20(18):6920-6026 doi: 10.1523/ JNEUROSCI.20-18-06920.2000
Wall RT, Harlan JM, Harker LA and Striker GE. Homocysteine-induced endothelial cell injury in vitro: a model for the study of vascular injury. Thromb Res. 1980; 18(1-2):113–121. DOI: 10.1016/0049-3848(80)90175-9
Gomes Trolin C, Regland B and Oreland L. Decreased methionine adenosyltransferase activity in erythrocytes of patients with dementia disorders. Eur Neuropsychopharmacol. 1995; 5(2):107-14. DOI: 10.1016/0924-977x(95)00007-c
Blandini F, Fancellu R, Martignoni E, et al. Plasma homocysteine and L-DOPA metabolism in patients with Parkinson disease. Clin Chem. 2001; 47(6):1102-4.
Bottiglieri T and Hylan K. S-adenosylmethionine levels in psychiatric and neurological disorders: a review. Acta Neurol Scand, Suppl. 1994; 89(54): 19–26. DOI: 10.1111/j.1600-0404.1994.tb05405.x
Loscalzo J. The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest. 1996; 98(1):5–7. doi: 10.1172/JCI118776
Kurz K, Frick B, Fürhapter C, et al. Homocysteine metabolism in different human cells. Pteridines. 2013;24(3-4)183- 189. https://doi.org/10.1515/pterid-2013-0039
Zappacosta B, Mordente A, Persichilli S, et al. Is homocysteine a pro-oxidant? Free Radical Research. 2001;35(5):499– 505. DOI: 10.1080/10715760100301511
McGeer PL, Itagaki S, Boyes BE and McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurol. 1988, 38(8): 1285–91. DOI: 10.1212/wnl.38.8.1285
Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson’s disease. British Journal of Pharmacology. 2007; 150(8): 963–976. DOI: 10.1038/sj.bjp.0707167
Tansey MG, Frank-Cannon TC, McCoy MK, et al. Neuroinflammation in Parkinson’s disease: is there sufficient evidence for mechanism-based interventional therapy?. Front Biosci. 2008; 13(2):709–17. DOI: 10.2741/2713
Mogi M, Harada M, Kondob T, et al. Interleukin-1ß, interleukin-6, epidermal growth factor and transforming growth factor-Alpha are elevated in the brain from parkinsonian patients. Neuroscience Letters. 1994;180(2): 147–50. https://doi.org/10.1016/0304-3940(94)90508-8
Blum-Degena D, Müller T, Kuhn W, Gerlach M, Przuntek H and Riederer P. Interleukin-1Beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Letters. 1995; 202(1-2):17–20. DOI: 10.1016/0304-3940(95)12192-7
Müller T, Blum-Degen D, Przuntek H and Kuhn W. Interleukin-6 levels in cerebrospinal fluid inversely correlate to severity of Parkinson’s disease. Act Neurol Scand. 1998; 98(2): 142–44. DOI: 10.1111/j.1600-0404.1998.tb01736.x
Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y and Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell. 2001; 105(7):891-902. DOI: 10.1016/ s0092-8674(01)00407-x
Imai Y, Soda M, Hatakeyama S, et al. CHIP is associated with Parkin, a gene responsible for familial Parkinson’s Disease and enhances its ubiquitin ligase activity. Mol Cell. 2002; 10(1): 55–67. DOI: 10.1016/s1097-2765(02)00583-x
R. J. Kaufman. Orchestrating the unfolded protein response in health and disease. J Clin Invest. 2002;110(10):1389– 98. DOI: 10.1172/JCI16886
Imai Y, Soda M and Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin protein ligase activity. J Biol Chem. 2000; 275(46): 35661–4. DOI: 10.1074/jbc.C000447200
Bournival J, Quessy P and Martinoli M. Protective effects of resveratrol and quercetin against MPP+-induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol. 2009;29(8): 1169–80. DOI: 10.1007/s10571-009-9411-5
Whaley-Connell A, McCullough PA and Sowers JR. The role of oxidative stress in the metabolic syndrome. Rev Cardiovas Med. 2011;12(1): 21–29. DOI: 10.3909/ricm0555
Zhou C, Huang Y and Przedborski S. Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci. 2008; 1147:93–104. DOI: 10.1196/annals.1427.023
Vincent AM, Brownlee M and Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Ann N Y Acad Sci. 2002; 959: 368–383. DOI: 10.1111/j.1749-6632.2002.tb02108.x
Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol. 2006; 212(2):167–78. DOI: 10.1016/j.taap.2006.01.003
Moreira PI, Santos MS, Seica R, Oliveira CR. Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes. J Neurol Sci. 2007; 257(1-2): 206–214. DOI: https://doi.org/10.1016/j.jns.2007.01.017
Bournival J, Francoeur MA, Renaud J, Martinoli MG. Quercetin and sesamin protect neuronal PC12 cells from high glucose-induced oxidation, nitrosative stress, and apoptosis. Rejuvenation Res. 2012;15(3):322–33. DOI: 10.1089/ rej.2011.1242
Bureau G, Longpré F, Martinoli M. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res. 2008; 86(2): 403–410. DOI: 10.1002/jnr.21503
Gélinas S and Martinoli M. Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells. J Neurosci Res. 2002;70(1): 90–96. DOI: 10.1002/jnr.10315
Aruoma OI, Hayashi Y, Marotta F, Mantello P, Rachmilewitz E, Montagnier L. Applications and bioefficacy of the functional food supplement fermented papaya preparation. Toxicology. 2010; 278(1):6–16. DOI: 10.1016/j.tox.2010.09.006
H. Cao, B. Qin, K. S. Panickar and R. A. Anderson. Tea and cinnamon polyphenols improve the metabolic syndrome. Agro Food Industry Hi-Tech. 2008;19(6):14–17.
García-Arencibia M, González S, de Lago E, Ramos JA, et al. Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson’s disease: importance of antioxidant and cannabinoid receptor independent properties. Brain Res. 2007; 1134(1):162-170. DOI: 10.1016/j.brainres.2006.11.063
Zuardi AW, Crippa JAS, Hallak JEC, et al. Cannabidiol for the treatment of psychosis in Parkinson´s disease. J Psychopharmacol. 2009; 23(8): 979–983. DOI: 10.1177/0269881108096519
Booz GW. Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic Biol Med 2011;51(5):1054–1061. doi: 10.1016/j.freeradbiomed.2011.01.007
Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacological Reviews. 2006; 58(3):389-462. doi: 10.1124/pr.58.3.2
A. Winquist, K. Steenland and A. Shankar. Higher serum uric acid associated with decreased Parkinson’s disease prevalence in a large community-based survey. Movement Disorders. 2010;25(7):932–936.
Andreadou E, Nikolaou C, Gournaras F. et al. Serum uric acid levels in patients with Parkinson’s disease: their relationship to treatment and disease duration. Clin Neurol Neurosurg. 2009;111(9): 724–28. https://doi. org/10.1016/j.clineuro.2009.06.012
Alvarez-Lario B and Macarron-Vicente J. Is there anything good in uric acid? QJM. 2011;104(12):1015–24. https:// doi.org/10.1093/qjmed/hcr159
Chen H, Mosley TH, Alonso A, Huang X. Plasma urate and Parkinson’s disease in the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol. 2009;169(9)1064–9. DOI: 10.1093/aje/kwp033
Cucuianu M and Brudasc I. Gout, hyperuricemia and the metabolic syndrome. Revista Romana de Medicina de Laborator. 2012; 20(3-4):199-206.
Cutler RG. Antioxidants and aging. Am J Clin Nutr. 1991;53 Sup 1: 373S–379S. DOI: 10.1093/ajcn/53.1.373S
Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. 1982;78(11): 6858–62. DOI: 10.1073/pnas.78.11.6858
Cipriani S, Desjardins CA, Burdett TC, et al. Urate and its transgenic depletion modulate neuronal vulnerability in a cellular model of Parkinson’s disease. PLoS ONE. 2012;7(5): Article ID e37331. https://doi.org/10.1371/journal. pone.0037331
Kamimura N, Nishimaki K, Ohsawa I and Ohta S. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice. Obesity (Silver Spring). 2011;19(7):1396–1403. DOI: 10.1038/oby.2011.6
Huang CS, Kawamura T, Toyoda Y, Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res. 2010; 44(9):971–982. DOI: 10.3109/10715762.2010.500328
Ohsawa I, Nishimaki K, Yamagata K, Ishikawa M and Ohta S. Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice. Biochem Biophys Res Commun. 2008; 377(4):1195– 98. DOI: 10.1016/j.bbrc.2008.10.156
K. Fukuda, S. Asoh, M. Ishikawa, Y. Yamamoto, I. Ohsawa and S. Ohta. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochemical and Biophysical Research Communication. 2007;361(3): 670–674.
Nakao A, Kaczorowski DJ, Wang Y. et al. Amelioration of rat cardiac cold ischemia/reperfusion injury with inhaled hydrogen or carbon monoxide, or both. J Heart Lung Transplant. 2010;29(5): 544–53. DOI: 10.1016/j.healun.2009.10.011
Buchholz BM, Kaczorowski DJ, Sugimoto R, et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant. 2008;8(10):2015–2024. DOI: 10.1111/j.1600-6143.2008.02359.x
Hayashida K, Sano M, Ohsawa I, et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia reperfusion injury. Biochemical and Biophysical Research Communications. 2008;373(1): 30–35. DOI: 10.1016/j.bbrc.2008.05.165
Nagata K, Nakashima-Kamimura N, Mikami T, Ohsawa I and Ohta S. Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacol. 2009;34(2): 501–508. DOI: 10.1038/npp.2008.95
Nakashima-Kamimura N, Mori T, et al. Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising antitumor activity in mice. Cancer Chemother Pharmacol. 2009; 64(4):753– 761. DOI:10.1007/s00280-008-0924-2
Cardinal JS, Zhan J, Wang Y, et al. Oral hydrogen water prevents chronic allograft nephropathy in rats. Kidney International. 2010; 77(2); 101–109. DOI: https://doi.org/10.1038/ki.2009.421
Fujita K, Seike T, Yutsudo N, et al. Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS ONE. 2009;4(9):Article ID e7247. https://doi.org/10.1371/journal.pone.0007247
Fu Y, Ito M, Fujita Y, et al. Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson’s disease. Neuroscience Letters. 2009;453(2): 81–85. https://doi. org/10.1016/j.neulet.2009.02.016
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007; 13(6):688–94. DOI: 10.1038/nm1577
H. Oharazawa, T. Igarashi, T. Yokota et al. Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci. 2010;51(1): 487–492. DOI: 10.1167/iovs.09-4089
Kajiyama S, Hasegawa G, Asano M, et al. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance, Nutrition Research. 2008;28(3): 137– 43. DOI: 10.1016/j.nutres.2008.01.008
Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study. J Clin Biochem Nutr. 2010; 46(2): 140–49. DOI: 10.3164/jcbn.09-100
Nakayama M, Kabayama S, Nakano H, et al. Biological effects of electrolyzed water in hemodialysis. Nephron Clin Pract. 2009;112(1): c9–c15. DOI: 10.1159/000210569
Suzuki Y, Sano M, Hayashida K, Ohsawa I, Ohta S, Fukuda K. Are the effects of α-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract? FEBS Letters. 2009; 583(13): 2157–159. https://doi.org/10.1016/j.febslet.2009.05.052
Ross GW, Abbott RD, Petrovitch H, et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA. 2000; 283(20): 2674–2679. DOI: 10.1001/jama.283.20.2674
Nehlig A, Daval JL, Debry G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev. 1992;17(2): 139–169. DOI: 10.1016/0165-0173(92)90012-b
Popoli P, Caporali M G, Scotti de Carolis A. Akinesia due to catecholamine depletion in mice is prevented by caffeine. Further evidence for an involvement of adenosinergic system in the control of motility. J Pharm Pharmacol. 1991; 43(4): 280–281. DOI: 10.1111/j.2042-7158.1991.tb06685.x
Daly JW. Caffeine analogs: biomedical impact. Cell Mol Life Sci. 2007;64(16): 2153–2169. DOI: 10.1007/ s00018-007-7051-9
Devasagayam TP, Kamat JP, Mohan H and Kesavan PC. Caffeine as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. (BBA) Biomembranes. 1996; 1282: 63–70. https://doi. org/10.1016/0005-2736(96)00040-5
Knekt P, Kilkkinen A, Rissanen H, Marniemi J, Saaksjarvi K and Heliövaara M. Serum vitamin D and the risk of Parkinson disease. Arch Neurol. 2010; 67(7): 808–811. doi: 10.1001/archneurol.2010.120
Buell J S and Dawson-Hughes B. Vitamin D and neurocognitive dysfunction: preventing Decline? Mol Aspects Med. 2008; 29(6): 415–422. doi: 10.1016/j.mam.2008.05.001
Newmark H, Newmark J. Vitamin D and Parkinson’s disease-a hypothesis. Mov Disord. 2007;22(4): 461–468. DOI: 10.1002/mds.21317
Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the Vitamin D receptor and 1α-hydroxylase in human brain. J Chem Neuroanat. 2005; 29(1): 21–30. DOI: 10.1016/j.jchemneu.2004.08.006
Erikssen G, Liestřl K, Bjřmholt J, Thaulow E, Sandvik L, Mrikssen J. Changes in physical fitness and changes in mortality. Lancet. 1998; 352(9130): 759-762. DOI: 10.1016/S0140-6736(98)02268-5
Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease. Nature. 2008; 454(7203):463-469. DOI: 10.1038/nature07206
Hu F B, Willett W C, Li T, Stampfer M J, Colditz G A and Manson J E. Adiposity as compared with physical activity in predicting mortality among women. N Engl J Med. 2004;352(26): 2694–2703. DOI: 10.1056/NEJMoa042135
Nieman DC. Current perspective on exercise immunology. Curr Sports Med Rep. 2003; 2(5):239–242. DOI: 10.1249/00149619-200310000-00001
Gleeson M, McFarlin B and Flynn M. Exercise and toll like receptors. Exerc Immunol Rev. 2006; 12:34–53.
Gleeson M. Immune function in sport and exercise. J Appl Physiol. 2007; 103(2): 693–699. DOI: 10.1152/ japplphysiol.00008.2007
Crizzle AM and Newhouse IJ. Is physical exercise beneficial for persons with Parkinson’s disease? Clin J Sport Med. 2006;16(5): 422–425. DOI: 10.1097/01.jsm.0000244612.55550.7d
Reuter I, Engelhardt M, Stecker K and Baas H. Therapeutic value of exercise training in Parkinson’s disease. Med Sci Sports Exerc. 1999; 31(11):1544–1549. DOI: 10.1097/00005768-199911000-00008
Palmer SS, Mortimer JA and Webster D D. Exercise therapy for Parkinson’s disease. Arch Phys Med Rehabil. 1986; 67(10):741–745. DOI: 10.1016/0003-9993(86)90007-9