2020, Number 4
<< Back Next >>
Rev Hematol Mex 2020; 21 (4)
Ruxolitinib as treatment against COVID-19 in Mexican population
Ovilla-Martínez R, Cota-Rangel X, De La Peña-Celaya JA, Molina-Jaimes A, Alvarado-Zepeda MA, Rojas-Vértiz CKE, Araujo-Martínez NI, Ruiz-Luján R, Ortiz-Arroyo A, Báez-Islas PE
Language: English
References: 29
Page: 195-204
PDF size: 762.89 Kb.
ABSTRACT
Background: Many of the cytokines involved in COVID-19 are triggered by the
JAK/STAT signal pathway. JAK inhibitors have been proposed as treatment for moderate
to severe SARS-CoV-2 infection.
Objective: To measure clinical changes by the 8-point ordinal scale; secondary
endpoint was to determine hospitalization days, proinflammatory changes, progression
to ICU, mechanical ventilation, deaths and adverse events.
Material and Method: A control paired case series of patients under compassionateuse
of ruxolitinib with confirmed diagnosis of SARS-CoV-2 pneumonia manifestations.
Results: We analyzed 20 cases with COVID-19 pneumonia with supplemental oxygen
requirement. The 8-point ordinal scale was 5 points in 9/10 and 6 points in 1/10
in the intervention group; 5 points in 8/10 and 6 points in 2/10 in the control group.
By the end of study all the ruxolitinib patients had < 2 points while 3 patients died (8
points) in the control group. The hospitalization length was shorter for the intervention
group with 9.7 (range 5-19 SD 5.27) versus 16.2 days (range 8-25 SD 4.78). No serious
adverse events were reported in the intervention group.
Conclusions: Ruxolitinib patients had better clinical course with shorter hospital
length without major toxicity. This preliminary study has promising effects to continue
with larger trials.
REFERENCES
Who.int [Internet]. World Health Organization: Coronavirus disease (COVID-19); Situation Report -191. [cited 2020 July 29] Available on: https://www.who.int/emergencies/ diseases/novel-coronavirus-2019/situation-reports
Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID- 19). StatPearls. StatPearls Publishing; 2020 [cited 2020 Mar 26].
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497-506. https:// doi.org/10.1016/S0140-6736(20)30183-5
Chen L, Liu HG, Liu W, Liu J, Liu K, Shang J, et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi 2020; 43 (0): E005. doi: 10.3760/cma.j.issn.1001-0939.2020.0005
Seif F, Aazami H, Khoshmirsafa M, Kamali M, Mohsenzadegan M, Pornour M, et al. JAK Inhibition as a new treatment strategy for patients with COVID-19. 2019. Int Arch Allergy Immunol 2020; 181 (6): 467-475. https://doi. org/10.1159/000508247
Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect 2020; 81 (2):318-356. doi: 10.1016/j.jinf.2020.04.017
Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020; 395 (10223): E30-31. https://doi.org/10.1016/S0140-6736(20)30304-4
Sarzi-Puttini P, Giorgi V, Sirotti S, et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol 2020; 38 (2): 337-342.
T-Virtanen A, Haikarainen T, Raivola J, Silvennoinen O. Selective JAKinibs: Prospects in inflammatory and autoimmune diseases. BioDrugs 2019; 33 (1): 15-32. doi: 10.1007/ s40259-019-00333-w
Albeituni S, Verbist KC, Tedrick PE, Tillman H, Picarsic J, Bassett R, et al. Mechanisms of action of ruxolitinib in murine models of hemophagocytic lymphohistiocytosis. Blood 2019; 134 (2): 147-159. doi: 10.1182/blood.2019000761
Zinter MS, Herminston ML. Calming the storm in HLH. Blood 2019; 134 (2): 103-104. doi: 10.1182/blood.2019001333
Sin JH, Zangardi ML. Ruxolitinib for secondary hemophagocytic lymphohistiocytosis: First case report. Hematol Oncol Stem Cell Ther 2019; 12 (3): 166-170. doi: 10.1016/j. hemonc.2017.07.002
Slostad J, Hoversten P, Haddox CL, Cisak K, Paludo J, Tefferi A. Ruxolitinib as first-line treatment in secondary hemophagocytic lymphohistiocytosis: A single patient experience. Am J Hematol 2018; 93 (2): E47-E49. doi: 10.1002/ajh.25063
Jagasia M, Zeiser R, Arbushites M, Delaite P, Gadbaw B, Von-Bubnoff N. Ruxolitinib for the treatment of patients with steroid-refractory GVHD: an introduction to the REACH trials. Immunotherapy 2018; 10 (5): 391-402. doi: 10.2217/imt-2017-0156
Fioranelli M, Roccia MG, Lotti T. Treatment of dermatomyositis with ruxolitinib. Dermatol Ther 2016; 29 (4): 285. doi: 10.1111/dth.12308
Aeschlimann F, Frémond M-L, Duffy D, Rice GI, Charuel J-L, Bondet V, et al. A child with severe juvenile dermatomyositis treated with ruxolitinib. Brain 2018; 141 (11): e80. doi: 10.1093/brain/awy255
Hermans MAW, Schrijver B, van Holten-Neelen CCPA, Gerth van Wijk R, van Hagen PM, van Daele PLA, et al. The JAK1/ JAK2- inhibitor ruxolitinib inhibits mast cell degranulation and cytokine release. Clin Exp Allergy 2018; 48 (11): 1412- 1420. doi: 10.1111/cea.13217
Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice article dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 2016; 19 (2): 181-93. DOI: 10.1016/j.chom.2016.01.007
Yang X, Cheng X, Tang Y, Qiu X, Wang Z, Fu G, et al. The role of type 1 interferons in Gram-negative bacteria. Blood 2020; 135 (14): 1087-1100. https://doi.org/10.1182/ blood.2019002282
Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020; 181 (5): 1016-1035.e19. https://doi.org/10.1016/j. cell.2020.04.035
Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID- 19): A multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol 2020; 146 (1): 137-146.e3. doi: 10.1016/j.jaci.2020.05.019
La Rosée F, Bremer HC, Gehrke I, Kehr A, Hochhaus A, Birndt S, et al. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia 2020; 34: 1805-1815.
Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020 May 19; 117 (20): 10970- 10975. doi: 10.1073/pnas.2005615117
Toniati P, Piva S, Cattalini M, Garrafa E, Regola F, Castelli F, et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev 2020; 19 (7): 102568. doi: 10.1016/j.autrev.2020.102568
Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol 2020; 92 (7): 814-818. doi: 10.1002/jmv.25801
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382 (19): 1787-1799. doi: 10.1056/NEJMoa2001282
Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA. 2020; 323 (24): 2493-2502. doi:10.1001/jama.2020.8630
Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med. 2020; 382 (24): 2327-2336. DOI: 10.1056/NEJMoa2007016
Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of COVID-19 — Preliminary report. N Engl J Med 2020. DOI: 10.1056/ NEJMoa2007764