2019, Number 3
<< Back Next >>
Revista Cubana de Angiología y Cirugía Vascular 2019; 20 (3)
Contrast enhancement and segmentation in diabetic foot ulcer images
García GG, Valdés SD, Baguer Díaz-Romañach ML, Savigne GWO, Aldama FA, Valdés PC, Martínez HAA, Fernández MJI
Language: Spanish
References: 25
Page: 1-15
PDF size: 609.25 Kb.
ABSTRACT
Introduction: The 3 to 5% of Cuban diabetic patients suffer from diabetic foot ulcer. The diabetic foot ulcer photographic images allow quantitative evaluations of a treatment. In Cuba, the ulcer area measurement is done manually or semi-automatically. There is no Cuban software reported that automatically measures the area, and allows knowing the state of the foot ulcer before and after a treatment.
Objetive: To compare qualitatively (given the absence of a gold standard) ulcer´s pre-processing and segmentation methods.
Methods: We develop a descriptive and transversal study with 6 diabetic patients from National Institute of Angiology and Vascular Surgery during October, 2018, with lesions of degree I-IV in the Wagner scale. The stereotaxic frame FrameHeber03® was used for obtaining planimetric images of the ulcers. In all, 51 ulcer images were obtained, and then we pre-processed it by Logarithmic Discrete Wavelet Transform under a S-LIP model, and found the ulcer border with the segmentation methods Chan-Vese, Gaussian Mixture Model (GMM), and GrabCut.
Results: The pre-processing step was crutial for obtaining good results in the segmentation step. The best performance was reached by the GMM segmentation method. The algorithms were more accurate in images with black skin patients, due to the high contrast between the skin and the ulcer border.
Conclusions: The automatic segmentation method (GMM) could be included in a software for detecting the border of the diabetic foot ulcer.
REFERENCES
Ministerio de Salud Pública. Dirección de Registros Médicos y Estadísticas de Salud. Estadísticas de Salud en Cuba. Anuario Estadístico 2017. La Habana. Cuba, 2018. Acceso: 03/02/2019. Disponible en: http://files.sld.cu/dne/files/2018/04/Anuario-Electronico-Espa%C3%B1ol-2017-ed-2018.pdf
García Herrera CM, Rodríguez Fernández R, Rodríguez Hernández L, Febles Sanabria R, Pancorbo Sandoval C, Cantero Calderón S, Vázquez Díaz O, Moliner Cartaya M, et al. Reducción de las amputaciones con Heberprot-P en la terapia local del pie diabético. Rev Española Investigaciones Quirúrgicas. 2011;14(1):21-6.
Berlanga J, Fernández JI, López E, López PA, del Río A, Valenzuela C, et al. Heberprot-P: a novel product for treating advanced diabetic foot ulcer. MEDICC Review. 2013;15(1):11-5.
González Rodríguez R, Cardentey García J, Casanova Moreno MD. Resultados del Heberprot-P® en pacientes con úlceras de pie diabético. Rev Arch Méd Camagüey. 2015;19(4):366-74.
Silva Pupo M, González Moya IA, Valenciano García Y, González Cedeño M. Evolución de lesiones complejas en el pie diabético con uso de Heberprot-P®. Rev Arch Méd Camagüey. 2015;19(4):357-65.
Cabal Mirabal CA, González Dalmau ER, Oramas Diaz L, Herrera Martinez LS, Berlanga Acosta JA, Fernández Montequín, JI, inventores. Organización Mundial de la Propiedad Intelectual. Marco estereotáxico para extremidades. Patente de Cuba PCT/CU20 16/050002, 2017. Acceso:31/07/2019. Disponible en: https://patents.google.com/patent/WO2017050302A1/.
Peña Acosta MM. Segmentación de imágenes fotográficas del pie diabético utilizando transformaciones de espacios de color [tesis]. La Habana: Instituto Superior Politécnico José Antonio Echevarría (CUJAE), Facultad de Ingeniería Biomédica: 2016.
García Herrera AL. Diagnóstico y tratamiento del pie diabético. La Habana: Elfos Scientiae. Editorial de Biociencias; 2018.
Frykberg RG, Zgonis T, Armstrong DG. Diabetic foot disorders: a clinical practice guideline. American College of Foot and Ankle Surgeons. J Foot Ankle Surg. 2006;45:S1-S66.
Valdés Santiago D, Mesejo León D, León Mecías Á. Multiple-level Logarithmic Wavelets for Mammographic Contrast Enhancement: A Statistical Analysis for Wavelet Selection. Comput Sis. 2018 Jun 30;22(2):621–37.
Valdés Santiago D, Mesejo León D, León Mecías Á. Wavelets Logarítmicas: Una Herramienta Efectiva para el Procesamiento de Mamogramas. Rev Ciencias Matemáticas. 2017;31(1):9-18.
Martins N, Pereira C, Ferreira M. Digital mammograms contrast enhancement using wavelets_A comparative study. 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Jun 11. Lisboa, Portugal: Instituto de Ingeniería Eléctrica y Electrónica (IEEE); 2008.
Chan TF, Vese LA. Active contours without edges. IEEE Transactions on Image Processing. 2001;10(2):266-77.
Rother C, Kolmogorov V, Blake A. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM (TOG). 2004;23(3): 309-14.
Redner RA, Walker HF. Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 1984;26(2):195-239.
Blei DM, Jordan MI. Variational inference for Dirichlet process mixtures. Bayesian Anal. 2006;1(1):121-43.
Van Rossum G, Drake Jr FL. Python tutorial. Amsterdam, Netherlands: Centrum voor Wiskunde en Informatica; 1995.
Bradski G. The opencv library. Dr Dobb's J. Software Tools. 2000;25:120-5.
Garcia-Zapirain B, Shalaby A, El-Baz A, Elmaghraby A. Automated framework for accurate segmentation of pressure ulcer images. Comput Biol Med. 2017;90:137-45.
Goyal M, Reeves ND, Davison AK, Rajbhandari S, Spragg J, Yap MH. Transactions on Emerging Topics in Computational Intelligence Sep 12. Nueva York, EE.UU: Instituto de Ingeniería Eléctrica y Electrónica (IEEE); 2018.
Goyal M, Yap MH, Reeves ND, Rajbhandari S, Spragg J. Fully convolutional networks for diabetic foot ulcer segmentation. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC); Oct 5. Banff, Canada: Instituto de Ingeniería Eléctrica y Electrónica (IEEE); 2017.
Zhang K, Lu W, Marziliano P. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies. Magnetic Resonan Imag. 2013;31(10):1731-43.
Yu HY, Zhi XB, Fan JL. Image segmentation based on weak fuzzy partition entropy. Neurocomputing. 2015;168:994-1010.
Wannous H, Lucas Y, Treuillet S, Albouy B. A complete 3D wound assessment tool for accurate tissue classification and measurement. 2008 15th IEEE International Conference on Image Processing. Oct 12. San Diego, CA, EE. UU.; Instituto de Ingeniería Eléctrica y Electrónica (IEEE); 2008.
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18(1):529.