2020, Number 5
<< Back Next >>
Med Crit 2020; 34 (5)
Index of oxygenation in neurosurgical patients using two ventilatory strategies on the perioperatory
González EEA, Sánchez DJS, Hernández LIM, Peniche MKG, Villegas DJE, Calyeca SMV
Language: Spanish
References: 39
Page: 265-272
PDF size: 243.67 Kb.
ABSTRACT
Introduction: Postoperative pulmonary comorbidity will depend on factors related to the patient, modifiable and non-modifiable, but intraoperative ventilatory parameters definitely play a fundamental role. There are oxygenation indices (OI) that may be useful in assessing the degree of lung injury.
Material and methods: Prospective, descriptive, analytical, case-control study. Patients who required neurosurgical intervention (urgent or elective) and invasive mechanical ventilation for the procedure. During the period from January 1, 2018 to December 31, 2018. Patients who met the inclusion criteria were assigned 1 to 1 to belong to the Intermediate Tidal Volumen group (ItV) (› 8 to ‹ 10 mL/kg predicted weight) or to the Low Tidal Volumen group (LtV) (6-8 mL/kg predicted weight). PEEP was determined for the doctor’s consideration (anesthesiologist).
Results: In the period considered, 60 patients were included who met the inclusion criteria. Of the total, 30 patients were included in the ItV group and 30 patients in the LtV group. The most commonly used ventilatory modality was asysto-control-volume (ACV) with 96.7% for ItV and 100% for LtV with p = 0.3. The predicted weight tV in the ItV group had an average of 8.9 mL/kg and in the LtV group an average of 7.1 mL/kg with a p = 0.001 The Glasgow coma scale (GCE) after extubation was of 14.3 points and 14.4 points for ItV and LtV without statistically significant difference.
Conclusion: Using intermediate tidal volume (› 8 to ‹ 10 mL/kg predicted weight) in neurosurgical patients, causes alteration of oxygenation rates: PaO
2/FiO
2 and PaO
2/PAO
2. The level of PEEP during the perioperative period of neurosurgical patients does not cause a significant difference in the Glasgow coma scale.
REFERENCES
Slutsky AS. History of mechanical ventilation: from vesalius to ventilator-induced lung injury. Am J Respir Crit Care Med. 2015;191(10):1106-1115.
Soto G. Ventilación mecánica: una breve historia. Neumol Pediatr. 2016;11(4):151-154.
Marini JJ. Mechanical ventilation: past lessons and the near future. Crit Care. 2013;17(Suppl 1):S1.
Thille WA, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515-1522.
Pettenuzzo T, Fan E. Year in review: mechanical ventilation. Respir Care. 2017;62(5):629-635.
Nieman GF, Gatto LA, Habashi NM. Impact of mechanical ventilation on the pathophysiology of progressive acute lung injury. J Appl Physiol. 2015;119(11):1245-1261.
Kuchnicka K, Maciejewski D. Ventilator-associated lung injury. Anaesthesiol Intensive Ther. 2013;45(3):164-170.
Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med. 2014;2(12):1007-1015.
Hemmes SN, Serpa Neto A, Schultz MJ. Intraoperative ventilatory strategies to prevent postperative pulmonary cmplications: a meta-analysis. Curr Opin Anesthesiol. 2013;26:126-133.
Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med. 2005;31(7):922-926.
Protti A, Votta E, Gattinoni L. Which is the most important strain in the pathogenesis of ventilator-induced lung injury: dynamic or static? Curr Opin Crit Care. 2014;20(1):33-38.
Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369:2126-2136.
Baid H. Patient safety. Identifying and managing complications of mechanical ventilation. Crit Care Nurs Clin North Am. 2016;28(4):451-462.
Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4(4):272-280.
Rao VK, Khanna AK. Postoperative respiratory impairment is a real risk for our patients: the intensivist’s perspective. Anesthesiol Res Pract. 2018:3215923.
Fernandez-Bustamante A, Wood CL, Tran ZV, Moine P. Intraoperative ventilation: incidence and risk factors for receiving large tidal volumes during general anesthesia. BMC Anesthesiol. 2011;11:22.
Hahn CE. KISS and indices of pulmonary oxygen transfer. Br J Anaesth. 2001;86:465-467.
Manzo PE, Mayo MR, de la Cruz LJ. La corrección del índice de oxigenación en los pacientes críticos al nivel de la ciudad de México. Rev Asoc Mex Med Crit y Ter Int. 2008;22(1):26-35.
Colín EV, Monares ZE, Sánchez CC, Elizalde GJJ, Poblano MM, Aguirre SJ, et al. Índices de oxigenación como factores pronósticos en el síndrome de insuficiencia respiratoria aguda. Rev Asoc Mex Med Crit y Ter Int. 2008;22(3):131-142.
Boone MD, Jinadasa SP, Mueller A, Shaefi S, Kasper EM, Hanafy KA, et al. The effect of positive end-expiratory pressure on intracranial pressure and cerebral hemodynamics. Neurocrit Care. 2017;26(2):174-181.
Peris-Montalt R, Cruz-García-Dihinx I, Errando C, Granell M. Efectos de la ventilación mecánica intraoperatoria y de la ventilación de protección pulmonar en el paciente quirúrgico adulto. MÉD. UIS. 2015;28(1):65-78.
Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282:54-61.
The Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT. A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301-1308.
Simonis FD, Serpa Neto A, Binnekade JM, Braber A, Bruin KCM, Determann RM, et al. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in Intensive Care Unit patients without ARDS: a randomized clinical trial. JAMA. 2018;320(18):1872-1880.
Fernandez-Perez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105:14-18.
Michelet P, D’ Journo XB, Roch A, Doddoli C, Marin V, Papazian L, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105:911-919.
M Karcz, PJ Papadakos. Respiratory complications in the postanesthesia care unit: A review of pathophysiological mechanisms. Can J Respir Ther. 2013;49(4):21-29.
Armstrong J, Guleria A, Girling K. Evaluation of gas exchange deficit in the critically ill. Continuing Education in Anaesthesia Critical Care & Pain. 2007;7:131-134.
Artigas A, Bernard GR, Carlet J, Carlet J, Falke K, Hudson L, et al. The American–European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;157:1332-1347.
Schmidt GA, Girard TD, Kress JP, Morris PE, Ouellette DR, Alhazzani W, et al. Liberation From Mechanical Ventilation in Critically Ill Adults: Executive Summary of an Official American College of Chest Physicians/American Thoracic Society Clinical Practice Guideline. Chest. 2017;151(1):160-165.
Cortés-Román JC, Sánchez-Díaz JS, Castañeda-Valladares E, Peniche-Moguel KG, Gutiérrez-Jiménez AA, Calyeca-Sánchez MV. Índices de oxigenación como predictores de fracaso en la extubación en pacientes críticamente enfermos. Acta Colombiana de Cuidado Intensivo. 2018;18(3):131-198.
Sánchez CM, Quintana DM, Palacios D, Hortigüela V, Schulke CM, García J, et al. Relationship between the alveolar-arterial oxygen gradient and PaO2/FiO2-introducing PEEP into the model. Med Intensiva. 2012;36(5):329-334.
Sganga G, Siegel JH, Coleman B, Giovannini I, Boldrini G, Pittiruti M. The physiologic meaning of the respiratory index in various types of critical illness. Crit Shock. 1985;17:179-193.
Cane RD, Shapiro BA, Templin R, Walther K. Unreliability of oxygen tension-based indices in reflecting intrapulmonary shunting in critically ill patients. Crit Care Med. 1988;16:1243-1245.
Rodríguez-Botoa G, Rivero-Garvía M, Gutiérrez-González R, Márquez-Rivas J. Conceptos básicos sobre la fisiopatología cerebral y la monitorización de la presión intracraneal. Neurología. 2015;30(1):16-22.
Slack RS, Shucart W. Respiratory dysfunction associated with traumatic injury to the central nervous system. Clin Chest Med. 1994;15:739-749.
Corradi F, Robba C, Tavazzi G, Via G. Combined lung and brain ultrasonography for an individualized “brain-protective ventilation strategy” in neurocritical care patients with challenging ventilation needs. Crit Ultrasound J. 2018;10(1):24.
Futier E, Constantin J, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428-437.
Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Biehl M, Binnekade JM, et al. Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology. 2015;123(1):66-78.