2020, Number 1
<< Back Next >>
Rev Cubana Med Trop 2020; 72 (1)
Cerebellar ataxias and viral infections: clinical characterization and neuropathogenic mechanisms
González GY, Vázquez MY, Torres VR, Rodríguez-Labrada R
Language: Spanish
References: 79
Page: 1-23
PDF size: 363.63 Kb.
ABSTRACT
Introduction: Ataxia is an alteration in the coordination of movements caused by a
dysfunction of the cerebellum and its connections, as well as alterations in the spinal cord,
the peripheral nerves, or a combination of these factors. Ataxias are classified into
hereditary, sporadic and acquired or secondary, in which neurotropic viruses are the main
causative agents.
Objective: Update knowledge about ataxias caused by neurotropic viruses and the
neurodegenerative mechanisms which could bear a relationship to ataxia.
Methods: A review was conducted of papers published in the main bibliographic databases
(Web of Sciences, Scopus, SciELO), using the search terms ataxia, neurotropic virus,
cerebellar ataxias, infectious ataxias, in English and in Spanish.
Discussion: The best known viruses causing infectious ataxias are the human
immunodeficiency virus, herpes simplex virus, human herpesvirus 6, varicella zoster virus,
Epstein-Barr virus, Western Nile virus and enterovirus 71, though other viruses may also
cause this condition. The neuropathogenic mechanisms suggested are direct invasion of the
virus and immunopathogenic processes triggered by the infection. These viruses may cause
acute cerebellar ataxia, acute postinfectious ataxia, opsoclonus-myoclonus-ataxia syndrome
and ataxia due to acute encephalomyelitis disseminata. Though most case reports describe
a satisfactory evolution of patients, some refer to neurological complications and even
death.
Conclusions: There is a current need to carry out further research about this type of ataxia
to improve its diagnosis and treatment.
REFERENCES
Pardo NA, Farfan JD, Zuñiga YC, Ortiz S, Penagos NH, Benitez DC, et al. Acute Ataxia in the Pediatric Population of the Fundacion Hospital de la Misericordia 2009-2013. Acta Neurol Colomb. 2014;30(3):169-74.
Velázquez-Pérez L. Ataxia espinocerebelosa tipo 2. Diagnóstico, pronóstico y evolución. 3ra ed., La Habana: Editorial Ciencias Médicas; 2012.
Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, Koli P, et al. Proinflmmatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia. 2007;55:483-96.
Ghosh S. Neurotropic Viruses: Trojan for Complex Neurodegenerative Diseases? J Neuroinfect Dis. 2015;6:173.
Carpio-Orantes L. Zika, ¿virus neurotrópico? Rev Med Inst Mex Seguro Soc. 2016;54(4):540-3.
Tan AH, Linn K, Ramli NM, Hlaing CS, Aye AM, Sam IC, et al. Opsoclonus-myoclonusataxia syndrome associated with dengue virus infection. Parkinsonism Relat Disord. 2014;(11):1309-10.
Tselis AC, Booss J. Epstein-Barr virus infections of the nervous system. Handbook of Clinical Neurology, Vol. 123 (3rd series) Neurovirology. Amsterdam: Elsevier; 2014 [acceso 10/05/19]. Disponible en: https://doi.org/10.1016/B978-0-444-53488-0.00013-4
Gilarranz R, Chamizo FJ, Colino E, Peña MJ. Acute ataxia associated with a human herpesvirus 6 infection. Enferm Infecc Microbiol Clin. 2015;33(6):424-5.
Davies B, Machin N, Lavin T, Ul Haq MA. Barr humbug: acute cerebellar ataxia due to Epstein-Barr virus. BMJ Case Rep. 2016 Disponible en: https://doi.org/10.1136/bcr-2016- 215303
Lucchese G, Kanduc D. Single amino acid repeats connect viruses to neurodegeneration. Curr Drug Discov Technol. 2014;11(3):214-9.
Dickens AM, Yoo SW, Chin AC, Xu J, Johnson TP, Trout AL, et al. Chronic low-level expression of HIV-1 Tat promotes a neurodegenerative phenotype with aging. Sci Rep. 2017;7(1):7748.
Sutherland EJ, Brew BJ. Human Immunodeficiency Virus and the Nervous System. Neurol Clin. 2018;36:751-65.
Dahl V, Peterson J, Fuchs D, Gisslen M, Palmer S, Price RW. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS. 2014;28(15):2251-8.
Anderson AM, Fennema-Notestine C, Umlauf A, Taylor MJ, Clifford DB, Marra CM et al. CSF biomarkers of monocyte activation and chemotaxis correlate with magnetic resonance spectroscopy metabolites during chronic HIV disease. J Neurovirol. 2015;21(5):559-67.
Gray LR, Brew BJ, Churchill MJ. Strategies to target HIV-1 in the central nervous system. Curr Opin HIV AIDS. 2016; 11(4):371–5.
Chang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, et al. HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem 2011; 286(47):41125-34.
Thaney VE, Sanchez AB, Fields JA, Minassian A, Young JW, Maung R, et al. Transgenic mice expressing HIV-1 envelope protein gp120 in the brain as an animal model in neuro AIDS research. J Neurovirol. 2018;24(2):156-67.
Puertas I, Jiménez-Jiménez FX, Gómez-Escalonilla C, Sayed Y, Cabrera-Valdivia F, Rojas R, et al. Progressive cerebellar syndrome as the first manifestation of HIV infection, Eur Neurol. 2003;50:120-1.
Pedroso JL, Vale TC, Gama MTD, Ribas G, Kristochik JCG, Germiniani FMB, et al. Cerebellar degeneration and progressive ataxia associated with HIV-virus infection. Parkinsonism Relat Disord. 2018;54:95-8.
Sullivan EV, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Pfefferbaum A. Pontocerebellar contribution to postural instability and psychomotor slowing in HIV infection without dementia. Brain Imaging Behav. 2011;5(1):12-24.
Nagao S, Kondo T, Nakamura T, Nakagawa T, Matsumoto S. A case of human immunodeficiency virus infection with cerebellar ataxia that suggested by an association with autoimmunity. Clin Neurol. 2016;56:255-9.
López M. A. Síndromes neurológicos paraneoplásicos. Revisión bibliográfica. Med Int Mex. 2012;28(3):269-77.
Alaedini A, Okamoto H, Briani C, Wollenberg K, Shill HA, Bushara KO, et al. Immune cross-reactivity in celiac disease: anti-gliadin antibodies bind to neuronal synapsin I. J Immunol. 2007;178:6590-5.
Guedes BF, Vieira Filho MAA, Listik C, Carra RB, Pereira CB, Silva ERD, et al. HIVassociated opsoclonus-myoclonus-ataxia syndrome: early infection, immune reconstitution syndrome or secondary to other diseases? Case report and literature review. J Neurovirol. 2018;(1):123-7.
Rozenberg F, Deback C, Agut H. Herpes simplex encephalitis: from virus to therapy. Infect Disord Drug Targets. 2011;11:235-50.
Widener RW, Whitley RJ. Herpes simplex virus. Handb Clin Neurol. 2014;123:251-63.
Sahar N, Nurre AM, Simon RQ. Infectious Trigger for Autoimmune Encephalitis: A Case Report and Literature Review. Case Rep Infect Dis. 2019 [acceso 10/05/19]. Disponible en: https://doi.org/10.1155/2019/5731969
Paketci C, Edem P, Okumus C, Sarioglu FC, Bayram E, Hiz S, et al. Herpes simplex virus-1 as a rare etiology of isolated acute cerebellitis: case report and literature review. J Neurovirol. 2019 [acceso 10/05/19]. Disponible en: https://doi.org/10.1007/s13365-019- 00802-6
Portolani M, Pecorari M, Tamassia MG, Gennari W, Beretti F, Guaraldi G. Case of fatal encephalitis by VHH-6 variant A. J Med Virol. 2001;65:133-7.
Chan PK, Hui M, Cheng AF. Prevalence and distribution of human herpesvirus 6 variants A and B in adult human brain. J Med Virol. 2001;64:42-6.
Madrid A, Ramos JM, Calvo R, Martínez J. Encefalomielitis aguda diseminada: análisis epidemiológico, clínico, analítico y evolutivo en 16 pacientes. An Pediatr (Barc). 2014;80:165-72.
Weber MS, Derfuss T, Metz I, Brück W. Defining distinct features of anti-MOG antibody associated central nervous system demyelination. Ther Adv Neurol Disord. 2018 [acceso 10/05/19]. Disponible en: https://doi.org/10.1177/1756286418762083
De Bolle L, Naesens L, De Clercq E. Update on Human Herpesvirus 6 Biology, Clinical Features, and Therapy. Clin Microbiol Rev. 2005;18(1):217-45.
Kondo K, Kondo T, Shimada K, Amo K, Miyagawa H, Yamanishi K. Strong interaction between human herpesvirus 6 and peripheral blood monocytes/macrophages during acute infection. J Med Virol. 2002;67:364-9.
Simon T, Cheuret E, Fiedler L, Mengelle C, Baudou E, Deiva K. Acute transverse myelitis following an opsoclonus-myoclonus syndrome: An unusual presentation. Eur J Paediatr Neurol. 2018;22(5):878-81.
Kato Z, Kozawa R, Teramoto T, Hashimoto K, Shinoda S, Kondo N. Acute cerebellitis in primary human herpesvirus-6 infection. Eur J Pediatr. 2003;162:801-3.
Hata A, Fujita M, Morishima T, Kumakura A, Hata D. Acute cerebellar associated with primary human herpesvirus-6 infection: A report of two cases. J Peadiatr Child Health. 2008;44:599-609.
Poretti A, Benson JE, Huisman TA, Boltshauser E. Acute ataxia in children:approach to clinical presentation and role of additional investigations. Neuropediatrics. 2013;44(3):127-41.
Naselli A, Pala G, Cresta F, Finetti M, Biancheri R, Renna S. Acute post-infectious cerebellar ataxia due to co-infection of human herpesvirus-6 and adenovirus mimicking myositis. Italian Journal of Pediatrics. 2014;40:98.
Crawford JR, Kadom N, Santi MR, Mariani B, Lavenstein BL. Human herpesvirus 6 rhomboencephalitis in immunocompetent children. J Child Neurol. 2007;22:1260-8.
Nagel MA, Gilden D. Neurological complications of varicella zoster virus reactivation. Curr Opin Neurol. 2014;27(3):356-60.
Matsuyama H, Ohi T. A case of cerebellar ataxia associated with VVZ infection. Neurological Sci. 2018;11:9-10.
Solís N, Salazar L, Hasbun R. Anti-NMDA Receptor antibody encephalitis with concomitant detection of Varicella zoster virus. J Clin Virol. 2016 [acceso 10/05/19]. Disponible en: https://doi.org/10.1016/j.jcv.2016.08.292
Fritzler MJ, Zhang M, Stinton LM, Rattner JB. Spectrum of centrosome autoantibodies in childhood varicella and post-varicella acute cerebellar ataxia. BMC Pediatr. 2003;3:11.
Salas AA, Nava A. Acute cerebellar ataxia in childhood: initial approach in the emergency departmentEmerg Med J. 2010;27(12):956-7.
Calabria F, Zappini F, Vattemi G, Tinazzi M. Pearls & Oysters: an unusual case of varicella-zoster virus cerebellitis and vasculopathy. Neurology. 2014 [acceso 10/05/19]. Disponible en: https://doi.org/10.1212/WNL.0000000000000011
Gilden D, Cohrs RJ, Mahalingam R, Nagel MA. Neurological disease produced by varicella zoster virus reactivation without rash. Curr Top Microbiol Immunol 2010;342:243- 53.
Holmoy T, Kvale EO, Vartdal F. Cerebrospinal fluid CD4+ T cells from a multiple sclerosis patient cross-recognize Epstein-Barr virus and myelin basic protein. J Neurovirol. 2004;10:278-83.
Van Sechel AC, van Stipdonk MJB, Persoon-Deen C, Geutskens SB, van Noort JM. VEB-Induced expression and HLA-DR-restricted presentation by human B cells of (alpha) B-crystallin, a candidate autoantigen in multiple sclerosis. J Immunol. 1999;162:129-35.
Ishikawa N, Kawaguchi H, Nakamura K, Kobayashi M. Central nervous system complications and neuroradiological findings in children with chronic active Epstein-Barr virus infection. Pediatr Int. 2013;55(1):72-8.
Zhou L, Miranda-Saksena M, Saksena NK. Viruses and neurodegeneration. Virology Journal. 2013;10:172.
Ali K, Lawthom C. Epstein-Barr virus-associated cerebellar ataxia. BMJ Case Rep. 2013 [acceso 10/05/19]. Disponible en: https://doi.org/10.1136/bcr-2013-009171
Geurten C, De Bilderling G, Nassogne MC, Misson JP, Verghote M. Pseudotumoral cerebellitis with acute hydrocephalus as a manifestation of VEB infection. Rev Neurol (Paris). 2018;174(1-2):70-2.
Ito H, Sayama S, Irie S, Kanazawa N, Saito T, Kowa H, et al. Antineuronal antibodies in acute cerebellar ataxia following Epstein-Barr virus infection. Neurology. 1994;44:1506- 7.
Murakami H, Iijima S, Kawamura M, Takahashi Y, Ichikawa H. A case of acute cerebellar ataxia following infectious mononucleosis accompanied by intrathecal antiglutamate receptor δ2 antibody. Rinsho Shinkeigaku. 2013;53(7):555-8.
Khoo C.S. Dengue Cerebellitis: A Case Report and Literature Review Am J Case Rep. 2018;19:864-7.
Imbert JL, Guevara P, Ramos-Castañeda J, Ramos C, Sotelo J. Dengue virus infects mouse cultured neurons but not astrocytes. J Med Virol Mar 1994;42(3):228-33.
Verma R, Sahu R, Holla V. Neurological manifestations of dengue: a review. J Neurol Sci. 2014 [acceso 10/05/19]. Disponible en: http://dx.doi.org/10.1016/j.jns.2014.08.044
Carod-Artal FJ. Neurological complications associated with dengue virus infection. Rev Neurol. 2019;69(3):113-22.
Amorim JFS, Azevedo AS, Costa SM, Trindade GF, Basílio-de-Oliveira CA, Gonçalves AJS, et al. Dengue infection in mice inoculated by the intracerebral route: neuropathological effects and identification of target cells for virus replication. Sci Rep. 2019 [acceso 10/05/19]. Disponible en: https://doi.org/10.1038/s41598-019-54474-7
Herath HMM, Hewavithana JS, De Silva CM, Kularathna OAR, Weerasinghe NP. Cerebral vasculitis and lateral rectus palsy - two rare central nervous system complications of dengue fever: two case reports and review of the literature. J Med Case Rep. 2018; 12(1):100.
Kamel MG, Nam NT, Han NHB, El-Shabouny AE, Makram AM, Abd-Elhay FA, et al. Post-dengue acute disseminated encephalomyelitis: A case report and meta-analysis. PLoS Negl Trop Dis. 2017;11(6):e0005715.
Gupta R, Gupta P, Sharma R. Dengue fever presenting as acute disseminated encephalomyelitis (ADEM). Journal Indian Academy of Clinical Medicine. 2015;16(2):159.
Graham JB, Swarts JL, Thomas S, Voss KM, Sekine A, Green R, et al. Immune correlates of protection from West Nile virus neuroinvasion and disease. J Infect Dis. 2018; 219(7):1162-71.
Radu RA, Terecoasă EO, Ene A, Băjenaru OA, Tiu C. Opsoclonus-Myoclonus Syndrome Associated With West-Nile Virus Infection: Case Report and Review of the Literature. Front Neurol. 2018;9:864.
Luo H, Wang T. Recent advances in understanding West Nile virus host immunity and viral pathogenesis. F1000 Res. 2018;7:338.
Paul AM, Acharya D, Duty L, Thompson EA, Le L, Stokic DS, et al. Osteopontin facilitates West Nile virus neuroinvasion via neutrophil “Trojan horse” transport. Sci Rep. 2017;7(1):4722.
Moreira MC, Klur S, Watanabe M, Nemeth AH, Le Ber I, Moniz JC, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nature Genetics. 2004;36(3):225-7.
Miller MS, Rialdi A, Ho JS, Tilove M, Martinez-Gil L, Moshkina NP, et al. Senataxin suppresses the antiviral transcriptional response and controls viral biogenesis. Nat Immunol. 2015 May;16(5):485-94.
Ibáñez-Juliá MJ, Pappa E, Gaymard B, Leclercq D, Hautefort C, Tilikete C, et al. Brain volumetric analysis and cortical thickness in adults with saccadic intrusions (ocular flutter or opsoclonus-myoclonus syndrome). Clin Neurol Neurosurg. 2017;163:167-72.
Huang HI, Shih SR. Neurotropic Enterovirus Infections in the Central Nervous System. Viruses. 2015;7(11):6051-66.
Lee KY. Enterovirus 71 infection and neurological complications. Korean J Pediatr. 2016;59(10):395-401.
Yang SD, Li PQ, Li YM, Li W, Lai WY, Zhu CP, et al. Clinical manifestations of severe enterovirus 71 infection and early assessment in a Southern China population. BMC Infect Dis. 2017;17(1):153.
Kim KH. Enterovirus 71 infection: An experience in Korea, 2009. Korean J Pediatr. 2010; 53(5):616-22.
Wang SM, Liu CC, Tseng HW, Wang JR, Huang CC, Chen YJ, et al. Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin Infect Dis. 1999;29:184-90.
Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol. 2010;9:1097-105.
Lee KY, Lee MS, Kim DB. Neurologic Manifestations of Enterovirus 71 infection in Korea. J Korean Med Sci. 2016(4):561-7.
Sahly A, Gauquelin L, Sébire G. Rapid Resolution of Enterovirus 71-Associated Opsoclonus Myoclonus Syndrome on Intravenous Immunoglobulin. Child Neurol Open. 2017 [acceso 10/05/19]. Disponible en: https://doi.org/10.1177/2329048X17733215
Lancella L, Esposito S, Galli ML, Bozzola E. Acute cerebellitis in children: an eleven year retrospective multicentric study in Italy. Ital J Pediatr. 2017;43:54.