2020, Number 1
Next >>
Vet Mex 2020; 7 (1)
Use of medetomidine, midazolam, ketamine and sevoflurane as an anesthetic protocol for domestic chickens
Celik Y, Atalan G, Güne V, Alpman U, Kaan YM
Language: English/Spanish
References: 33
Page: 1-12
PDF size: 272.68 Kb.
ABSTRACT
Changes in physiological and biochemical parameters after administration
of medetomidine (MED), midazolam (MID), ketamine (KET) and a 2% of
the inhalation anesthetic sevoflurane (SEVO), were investigated in domestic
chickens. The anesthetic protocol began with a simultaneous intrapectoral
injection (IP) of MED (50 μg/kg) and MID (0.5 mg/kg), followed by IP administration
of 25 mg/kg of KET 10 min later. Anesthesia was then maintained
for 30 min by 2% SEVO (with a 500 ml/min oxygen flow), using an
Ayres T piece device. Heart and respiratory rates, cloacal temperature, reflex
response and electrocardiogram (ECG) parameters were recorded at time
zero (T0) before anesthesia (BA, baseline values), at time of MED + MID administration
(T1), at time of ketamine injection (T2), 30 min after the start of
SEVO inhalation (T3) and at recovery. Blood was also drawn at T0 and T3 to
assess albumin, creatinine, glucose and liver enzyme concentrations. Cloacal
temperature, heart and respiratory rates differed from baseline values at all
time intervals during anesthesia (p ‹ 0.05). Heart rate decreased following
the MED + MID injection (at T1, T2 and T3), and partially recovered by the
reanimation period. Reflex response also differed between time 0 and all
anesthesia time points (p ‹ 0.05). Mean amplitude of the P wave of the ECG
was increased during MED + MID (T1) and KET (T2) anesthesia. The mean
ST interval showed a large increase at T1, which was maintained throughout
anesthesia (p ‹ 0.05). Albumin, glucose and the ALT enzyme decreased
between T0 and T3. In conclusion, the use of MED + MID + KET and SEVO as an anesthetic combination altered cardiorespiratory and biochemical parameters
of chickens, but no life-threatening effects were observed as a result
of these changes. Hence, this drug combination can be adequately used as
an anesthesia protocol in chickens.
REFERENCES
Doneley B. Avian medicine and surgery in practice: companion and aviary birds. Boca Raton, FL: CRC Press; 2016.
Machin KL. Avian and exotic pet medicine. London: WB Saunders; 2004.
Mohammad FK, Faris GAM, Al-Zubeady AZ. Developmental and behavioral effects of medetomidine following in ovo injection in chicks. Neurotoxicol Teratol. 2012;34:214-8.
Grimm KA, Lamont LA, Tranquilli WJ, Greene SA, Robertson S. Veterinary anesthesia and analgesia. Hoboken, NJ: John Wiley & Sons; 2015.
Mohammed FK, Al-Badrany MS, Al-Hasan AM. Detomidine Ketamine anesthesia in chickens. Vet Rec. 1993;133:192.
Christensen J, Fosse RT, Halvorsen OJ, Morild I. Comparison of various anesthetic regimens in the domestic fowl. Am J Vet Res. 1987;48(11):1649-57.
Pieri L, Schaffner R, Scherschlicht R, Polc P, Sepinwall J, Davidson A, et al. Pharmacology of midazolam. Arzneimittel-Forschung. 1981;31(12a):2180-201.
Reves JD, Fragen RJ, Vinik HR, Greenblatt DJ. Midazolam: pharmacology and uses. Anesthesiology. 1985;62(3):310-24.
Javdani M, Nikousefat Z, Ghashghaei A, Hashemnia M. Efficacy of ketamine in combination with four common analgesics on some hematological factors of broiler chickens. Int J Livest Res. 2014;4(2):1-9
Quandt JE, Greenacre CB. Sevoflurane anesthesia in psittacines. J Zoo Wildl Med. 1999;30(2):308-9.
Natalini CC. Sevoflurane, desflurane and xenon new inhaled anesthetics in veterinary medicine. Cienc Rural. 2001;31(1):177-83.
Naganobu K, Fujisawa Y, Ohde H, Matsuda Y, Sonoda T, Ogawa H. Determination of the minimum anesthetic concentration and cardiovascular dose response for sevoflurane in chickens during controlled ventilation. Vet Surg. 2000;29(1):102-5.
Atalan G, Uzun M, Demirkan I, Yıldız S, Cenesiz M. Effects of medetomidine-butorphanol- ketamin anaesthesia and atipamezole on heart and respiratory rate and cloacal temperature of domestic pigeons. J Vet Med A. 2002;49(1):281-5.
Kuenzel WJ, Kusiak JW, Augustine PC, Pitha J. Effect of a beta-adrenergic antagonist on blood pressure, heart rate and beta-adrenoceptors in turkey poults. Comp Biochem Phys C. 1983;76(2):371-5.
Machin KL, Caulkett NA. Cardiopulmonary effects of propofol and a medetomidine- midazolam-ketamine combination in mallard ducks. J Vet Anm Res. 1998;59(5):598-602.
Sturkie PD, Chillseyzn J. Heart rate changes with age in chickens. Poultry Science. 1972;51(3):906-11.
Altimiras J, Crossley DA. Control of blood pressure mediated by baroreflex changes of heart rate in the chicken embryo (Gallus gallus). Am J Physiol Regul Integr Comp Physiol. 2000;278(4):980-6.
Bahri E, Nesrin S, Bölükbaı MF. Tavuklarda Elektrokardiyogram. Lalahan Hayvancılık Aratırma Enstitüsü Dergisi. 1985;25(1):79-86.
Naganobu K, Hagio M. Dose-related cardiovascular effects of isoflurane in chickens during controlled ventilation. J Vet Med Sci. 2000;62(4):435-7.
Uzun M, Yıldız S, Atalan G, Kaya M, Sulu N. Effects of medetomidine-ketamine combination anesthesia on electrocardiographic findings, body temperature, and heart and respiratory rates in domestic pigeons. Turk J Vet Anim Sci. 2003;27(2):377-82.
Maiti SK, Tiwary R, Vasan P, Dutta A. Xylazine, diazepam and midazolam premedicated ketamine anesthesia in White Leghorn cockerels for typhlectomy. J S Afr Vet Assoc. 2006;77(1):12-8.
Cornick-Seahorn JL. Veterinary anesthesia. Oxford: Butterworth-Heinemann; 2001.
Ritchie BW, Harrison GJ, Harrison LR. Avian medicine: principles and application. Lake Worth: Wingers Publishing; 1994.
Miller W, Buttrick M. Current anesthesia recommendations for companion birds. Iowa State University Veterinarian. 1999;61(2):3.
Brouwers PJ, Wijdicks EF, Hasan D. Serial electrocardiographic recording in aneurysmal subarachnoid hemorrhage. Stroke. 1989;20:1162-7.
Cruickshank JM, Neil-Dwyer G, Brice J. Electrocardiographic changes and their prognostic significance in subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 1974;37:755-9.
Strachan F. Large animal anesthesia. In: Welsh L, ed. Anaesthesia for veterinary nurses. 2nd ed. London: Blackwell Publishing; 2009.
Lichtenberger M, Ko J. Anesthesia and analgesia for small mammals and birds. Vet Clin N Am-Exot. 2007;10(2):293-315.
Arnall L. Anaesthesia and surgery in cage and aviary birds. Vet Rec. 1961;73:139-42.
Naganobu K, Ise K, Miyamoto T, Hagio M. Sevoflurane anesthesia in chickens during spontaneous and controlled ventilation. Vet Rec. 2003;152(2):45-8.
Chan FT, Chang GR, Wang HC, Hsu TH. Anesthesia with isoflurane and sevoflurane in the crested serpent eagle (Spilornis cheela hoya): Minimum anesthetic concentration, physiological effects, hematocrit, plasma chemistry and behavioral effects. J Vet Med Sci. 2013;75(1):1591-600.
Hall LW, Clarke KW, Trim CM. Veterinary anaesthesia. 10th ed. London: W.B. Saunders; 2000.
Joyner PH, Jones MP, Ward D, Gompf RE, Zagaya N, Sleeman JM. Induction and recovery characteristics and cardiopulmonary effects of sevoflurane and isoflurane in bald eagles. Am J Vet Res. 2008;69(1):13-22.