2020, Number 3
<< Back Next >>
Residente 2020; 15 (3)
Types of cell death and their clinical implications
Carranza-Aguilar CJ, Ruiz-Quiñonez AK, González-Espinosa C, Cruz-Martín-del-Campo SL
Language: Spanish
References: 105
Page: 97-112
PDF size: 449.61 Kb.
ABSTRACT
Cell death is important in embryonic development, cell renewal and maintaining homeostasis. However, its malfunction is involved in the development of pathologies such as cancer, neurodegenerative disorders, tissue atrophy, and autoimmune diseases, among others. Apoptosis, or programmed cell death, is the most studied type of cell death and its importance lies in the fact that it is a common process that helps the body to function properly. Other types of cell death, such as necrosis, pyroptosis or NETosis can occur in the presence of molecular patterns associated with pathogens or damage, which produce unwanted responses in the organism. The induction or inhibition of cell death have been proposed as therapy for some diseases over the years, but the available studies are contradictory or not enough to determine the efficacy of such interventions. Currently, there are some therapeutic approaches to regulate cell death, for example, to avoid Parkinson’s disease development, to reduce malignant cells in different types of cancer, to avoid liver damage induced by cirrhosis, and other disorders. In this paper we review the main features of different cell death mechanisms and some therapeutic approaches aimed at the regulation of this process.
REFERENCES
Clarke PGH, Clarke S. Nineteenth century research on naturally occurring cell death and related phenomena. Anat Embryol (Berl). 1996; 193 (2): 81-99. doi: 10.1007/BF00214700.
Zakeri Z, Lockshin RA. Cell death: history and future. Adv Exp Med Biol. 2008; 615: 1-11. doi: 10.1007/978-1-4020-6554-5_1.
Glucksmann A. Cell deaths in normal vertebrate ontogeny. Biol Rev Camb Philos Soc. 1951; 26 (1): 59-86. doi: 10.1111/j.1469-185x.1951.tb00774.x.
Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer. 1972; 26 (4): 239-257. doi: 10.1038/bjc.1972.33.
Curtin JF, Cotter TG. Apoptosis: historical perspectives. Essays Biochem. 2003; 39: 1-10. doi: 10.1042/bse0390001.
Knight RA, Melino G. Cell death in disease: from 2010 onwards. Cell Death Dis. 2011; 2 (9): e202-e202. doi: 10.1038/cddis.2011.89.
Yan G, Elbadawi M, Efferth T. Multiple cell death modalities and their key features (Review). World Acad Sci J March. 2020: 39-48. doi: 10.3892/wasj.2020.40.
Galluzzi L, Maiuri MC, Vitale I et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007; 14 (7): 1237-1243. doi: 10.1038/sj.cdd.4402148.
Green DR, Llambi F. Cell Death Signaling. Cold Spring Harb Perspect Biol. 2015; 7 (12): a006080. doi: 10.1101/cshperspect.a006080.
Galluzzi L, Vitale I. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 2018; 25: 486-541. doi: 10.1038/s41418-017-0012-4.
Adigun R, Basit H, Murray J. Necrosis, Cell (Liquefactive, Coagulative, Caseous, Fat, Fibrinoid, and Gangrenous), 2020. Available in: https://www.ncbi.nlm.nih.gov/books/NBK430935/.
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35 (4): 495-516. doi: 10.1080/01926230701320337.
Tait SWG, Ichim G, Green DR. Die another way-non-apoptotic mechanisms of cell death. J Cell Sci. 2014; 127 (10): 2135-2144. doi: 10.1242/jcs.093575.
Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death in disease: mechanisms and emerging therapeutic concepts. N Engl J Med. 2009; 361 (16): 1570-1583. doi: 10.1056/NEJMra0901217.
Hanson B. Necroptosis: a new way of dying? Cancer Biol Ther. 2016; 17 (9): 899-910. doi: 10.1080/15384047.2016.1210732.
Artal-Sanz M, Tavernarakis N. Proteolytic mechanisms in necrotic cell death and neurodegeneration. FEBS Lett. 2005; 579 (15): 3287-3296. doi: 10.1016/j.febslet.2005.03.052.
Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci. 2007; 32 (1): 37-43. doi: 10.1016/j.tibs.2006.11.001.
Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull. 1998; 46 (4): 281-309. doi: 10.1016/S0361-9230(98)00024-0.
Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev. 2006; 20 (1): 1-15. doi: 10.1101/gad.1376506.
Fleisher TA. Apoptosis. 1997; 78: 245-250. doi: 10.1016/S1081-1206(10)63176-6.
Gordeziani M, Adamia G, Khatisashvili G, Gigolashvili G. Programmed cell self-liquidation (apoptosis). Ann Agrar Sci. 2017; 15 (1): 148-154. doi: 10.1016/j.aasci.2016.11.001.
Saraste A. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 2000; 45 (3): 528-537. doi: 10.1016/S0008-6363(99)00384-3.
Yang Y, Jiang G, Zhang P, Fan J. Programmed cell death and its role in inflammation. Mil Med Res. 2015; 2 (1): 12. doi: 10.1186/s40779-015-0039-0.
Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev. 2017; 277 (1): 76-89. doi: 10.1111/imr.12541.
Li P, Zhou L, Zhao T et al. Caspase-9: structure, mechanisms and clinical application. Oncotarget. 2017; 8 (14): 23996-24008. doi: 10.18632/oncotarget.15098.
Talanian RV, Yang X, Turbov J et al. Granule-mediated Killing: Pathways for Granzyme B-initiated Apoptosis. J Exp Med. 1997; 186 (8): 1323-1331. doi: 10.1084/jem.186.8.1323.
Shi Y. Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci. 2004; 13 (8): 1979-1987. doi: 10.1110/ps.04789804.
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019; 20 (3): 175-193. doi: 10.1038/s41580-018-0089-8.
Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V. Role of apoptosis in disease. Aging (Albany NY). 2012; 4 (5): 330-349. doi: 10.18632/aging.100459.
Roach HI, Aigner T, Kouri JB. Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis. 2004; 9 (3): 265-277. doi: 10.1023/B:APPT.0000025803.17498.26.
Zangemeister-Wittke U, Simon H-U. Apoptosis-Regulation and clinical implications. Cell Death Differ. 2001; 8 (5): 537-544. doi: 10.1038/sj.cdd.4400844.
Gong Y, Fan Z, Luo G et al. The role of necroptosis in cancer biology and therapy. Mol Cancer. 2019; 18 (1): 100. doi: 10.1186/s12943-019-1029-8.
Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation. 2018; 15 (1): 199. doi: 10.1186/s12974-018-1235-0.
Zhang S, Tang M, Luo H, Shi C, Xu Y. Necroptosis in neurodegenerative diseases: a potential therapeutic target. Cell Death Dis. 2017; 8 (6): e2905-e2905. doi: 10.1038/cddis.2017.286.
Zhu F, Zhang W, Yang T, He S. Complex roles of necroptosis in cancer. J Zhejiang Univ B. 2019; 20 (5): 399-413. doi: 10.1631/jzus.B1900160.
Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019; 26 (1): 99-114. doi: 10.1038/s41418-018-0212-6.
Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death. Nat Rev Microbiol. 2009; 7 (2): 99-109. doi: 10.1038/nrmicro2070.Pyroptosis.
Nyström S, Antoine DJ, Lundbäck P et al. TLR activation regulates damage-associated molecular pattern isoforms released during pyroptosis. EMBO J. 2013; 32 (1): 86-99. doi: 10.1038/emboj.2012.328.
Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019; 20 (13): 3328. doi: 10.3390/ijms20133328.
Shi J, Zhao Y, Wang K et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015; 526 (7575): 660-665. doi: 10.1038/nature15514.
Zhou CB, Fang JY. The role of pyroptosis in gastrointestinal cancer and immune responses to intestinal microbial infection. Biochim Biophys Acta Rev Cancer. 2019; 1872 (1): 1-10. doi: 10.1016/j.bbcan.2019.05.001.
Zhao G, Xie Z. Pyroptosis and neurological diseases. Neuroimmunol Neuroinflammation. 2014; 1 (2): 60. doi: 10.4103/2347-8659.139716.
Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: An overview. Front Immunol. 2017; 8: 1-20. doi: 10.3389/fimmu.2017.00081.
Irizarry-Caro JA, Carmona-Rivera C, Schwartz DM, Khaznadar SS, Kaplan MJ, Grayson PC. Brief report: drugs implicated in systemic autoimmunity modulate neutrophil extracellular trap formation. Arthritis Rheumatol. 2018; 70 (3): 468-474. doi: 10.1002/art.40372.
Rai G. NETosis: mechanisms and antimicrobial strategies. In: Sanchez-Zuniga JM. Netosis. Elsevier; 2019, pp. 23-55. doi: 10.1016/B978-0-12-816147-0.00002-2.
Rada B. Neutrophil extracellular traps. Methods Mol Biol. 2019; 1982: 517-528. doi: 10.1007/978-1-4939-9424-3_31.
Kaplan JM. Neutrophil extracelullar traps (NETs):Double-edged swords of innate immunity 1. 2013; 189 (6): 2689-2695. doi: 10.4049/jimmunol.1201719.Neutrophil.
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010; 221 (1): 3-12. doi: http://doi.org/10.1002/path.2697. 10.1002/path.2697.Autophagy.
Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions. Cell Death Differ. 2020; 27 (3): 858-871. doi: 10.1038/s41418-019-0480-9.
Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014; 20 (3): 460-473. doi: 10.1089/ars.2013.5371.
Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014; 24 (1): 24-41. doi: 10.1038/cr.2013.168.
Li W, Li J, Bao J. Microautophagy: lesser-known self-eating. Cell Mol Life Sci. 2012; 69 (7): 1125-1136. doi: 10.1007/s00018-011-0865-5.
Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012; 22 (8): 407-417. doi: 10.1016/j.tcb.2012.05.006.
Denton D, Kumar S. Autophagy-dependent cell death. Cell Death Differ. 2019; 26 (4): 605-616. doi: 10.1038/s41418-018-0252-y.
You L, Jin S, Zhu L, Qian W. Autophagy, autophagy-associated adaptive immune responses and its role in hematologic malignancies. Oncotarget. 2017; 8 (7): 12374-12388. doi: 10.18632/oncotarget.13583.
Qu X, Yu J, Bhagat G et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003; 112 (12): 1809-1820. doi: 10.1172/JCI20039.
Radwan SM, Hamdy NM, Hegab HM, El-Mesallamy HO. Beclin-1 and hypoxia-inducible factor-1α genes expression: Potential biomarkers in acute leukemia patients. Cancer Biomarkers. 2016; 16 (4): 619-626. doi: 10.3233/CBM-160603.
Li X, Zhou Y, Li Y et al. Autophagy: a novel mechanism of chemoresistance in cancers. Biomed Pharmacother. 2019; 119: 109415. doi: 10.1016/j.biopha.2019.109415.
Durgan J, Florey O. Cancer cell cannibalism: Multiple triggers emerge for entosis. Biochim Biophys Acta-Mol Cell Res. 2018; 1865 (6): 831-841. doi: 10.1016/j.bbamcr.2018.03.004.
Krishna S, Overholtzer M. Mechanisms and consequences of entosis. Cell Mol Life Sci. 2016; 73 (11-12): 2379-2386. doi: 10.1007/s00018-016-2207-0.
Zeng C, Zeng B, Dong C, Liu J, Xing F. Rho-ROCK signaling mediates entotic cell death in tumor. Cell Death Discov. 2020; 6 (1): 10-12. doi: 10.1038/s41420-020-0238-7.
Sun Q, Cibas ES, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res. 2014; 24 (11): 1288-1298. doi: 10.1038/cr.2014.137.
Ruan B, Niu Z, Jiang X et al. High frequency of cell-in-cell formation in heterogeneous human breast cancer tissue in a patient with poor prognosis: a case report and literature review. Front Oncol. 2019; 9: 1-6. doi: 10.3389/fonc.2019.01444.
Guadamillas MC, Cerezo A, del Pozo MA. Overcoming anoikis-pathways to anchorage-independent growth in cancer. J Cell Sci. 2011; 124 (19): 3189-3197. doi: 10.1242/jcs.072165.
Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013; 1833 (12): 3481-3498. doi: 10.1016/j.bbamcr.2013.06.026.
Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014; 171 (8): 2000-2016. doi: 10.1111/bph.12416.
Robinson N, Ganesan R, Hegedűs C, Kovács K, Kufer TA, Virág L. Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos. Redox Biol. 2019; 26: 101239. doi: 10.1016/j.redox.2019.101239.
Lockshin RA, Zakeri Z. Cell death in health and disease. J Cell Mol Med. 2007; 11 (6): 1214-1224. doi: 10.1111/j.1582-4934.2007.00150.x.
Fischer U, Schulze-Osthoff K. Apoptosis-based therapies and drug targets. Cell Death Differ. 2005; 12 (S1): 942-961. doi: 10.1038/sj.cdd.4401556.
Pfeffer CM, Singh ATK. Apoptosis: a target for anticancer therapy. Int J Mol Sci. 2018; 19 (2): 448. doi: 10.3390/ijms19020448.
Kaminskyy VO, Zhivotovsky B. Cell death-based treatment of various diseases: a fifty-year journey. Cell Death Dis. 2018; 9 (2): 110. doi: 10.1038/s41419-017-0168-3.
Green DR, Kroemer G. Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest. 2005; 115 (10): 2610-2617. doi: 10.1172/JCI26321.
Fulda S. Repurposing anticancer drugs for targeting necroptosis. Cell Cycle. 2018; 17 (7): 829-832. doi: 10.1080/15384101.2018.1442626.
Derakhshan A, Chen Z, Waes C Van. Therapeutic small molecules target inhibitor of apoptosis proteins in cancers with deregulation of extrinsic and intrinsic cell death pathways. 2017; 1: 1379-1388. doi: 10.1158/1078-0432.CCR-16-2172.
Rudin CM, Hann CL, Garon EB et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res. 2012; 18 (11): 3163-3169. doi: 10.1158/1078-0432.CCR-11-3090.
Lochmann TL, Floros K V., Naseri M et al. Venetoclax is effective in small-cell lung cancers with high BCL-2 expression. Clin Cancer Res. 2018; 24 (2): 360-369. doi: 10.1158/1078-0432.CCR-17-1606.
Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018; 6 (1): 8. doi: 10.1186/s40425-018-0316-z.
Guo L, Zhang H, Chen B. Nivolumab as programmed death-1 (PD-1) inhibitor for targeted immunotherapy in tumor. J Cancer. 2017; 8 (3): 410-416. doi: 10.7150/jca.17144.
Pan P, Cai Z, Zhuang C, Chen X, Chai Y. Methodology of drug screening and target identification for new necroptosis inhibitors. J Pharm Anal. 2019; 9 (2): 71-76. doi: 10.1016/j.jpha.2018.11.002.
Roulstone V, Pedersen M, Kyula J et al. BRAF- and MEK-targeted small molecule inhibitors exert enhanced antimelanoma effects in combination with oncolytic reovirus through ER stress. Mol Ther. 2015; 23 (5): 931-942. doi: 10.1038/mt.2015.15.
Brostjan C, Oehler R. The role of neutrophil death in chronic inflammation and cancer. Cell Death Discov. 2020; 6 (1): 26. doi: 10.1038/s41420-020-0255-6.
Tucker B, Vaidya K, Kurup R et al. Colchicine inhibits neutrophil extracellular trap formation in acute coronary syndrome patients post percutaneous coronary intervention. J Am Coll Cardiol. 2020; 75 (11): 1346. doi: 10.1016/S0735-1097(20)31973-2.
Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019; 50 (6): 1352-1364. doi: 10.1016/j.immuni.2019.05.020.
Mehta HM, Malandra M, Corey SJ. G-CSF and GM-CSF in Neutropenia. J Immunol. 2015; 195 (4): 1341-1349. doi: 10.4049/jimmunol.1500861.
Ten Hove T. Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut. 2002; 50 (2): 206-211. doi: 10.1136/gut.50.2.206.
Youdim MBH, Amit T, Falach-Yogev M, Am OB, Maruyama W, Naoi M. The essentiality of Bcl-2, PKC and proteasome–ubiquitin complex activations in the neuroprotective-antiapoptotic action of the anti-Parkinson drug, rasagiline. Biochem Pharmacol. 2003; 66 (8): 1635-1641. doi: 10.1016/S0006-2952(03)00535-5.
Nayak L, Henchcliffe C. Rasagiline in treatment of Parkinson’s disease. Neuropsychiatr Dis Treat. 2008; 4 (1): 23-32. Available in: http://www.ncbi.nlm.nih.gov/pubmed/18728823.
Pollyea DA, Amaya M, Strati P, Konopleva MY. Venetoclax for AML: changing the treatment paradigm. Blood Adv. 2019; 3 (24): 4326-4335. doi: 10.1182/bloodadvances.2019000937.
Leung YY, Yao Hui LL, Kraus VB. Colchicine-Update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum. 2015; 45 (3): 341-350. doi: 10.1016/j.semarthrit.2015.06.013.
Vaidya K, Martínez G, Patel S. The role of colchicine in acute coronary syndromes. Clin Ther. 2019; 41 (1): 11-20. doi: 10.1016/j.clinthera.2018.07.023.
Lichtenstein GR, Feagan BG, Cohen RD et al. Infliximab for Crohn’s disease: more than 13 years of real-world experience. Inflamm Bowel Dis. 2018; 24 (3): 490-501. doi: 10.1093/ibd/izx072.
Billmeier U, Dieterich W, Neurath MF, Atreya R. Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases. World J Gastroenterol. 2016; 22 (42): 9300. doi: 10.3748/wjg.v22.i42.9300.
Morris G, Walker AJ, Berk M, Maes M, Puri BK. Cell death Pathways : a novel therapeutic approach for neuroscientists. 2018; 55: 5767-5786. doi: 10.1007/s12035-017-0793-y.
Mehta G, Rousell S, Burgess G et al. A placebo-controlled, multicenter, double-blind, phase 2 randomized trial of the pan-caspase inhibitor Emricasan in patients with acutely decompensated cirrhosis. J Clin Exp Hepatol. 2018; 8 (3): 224-234. doi: 10.1016/j.jceh.2017.11.006.
Lutz H, Hu S, Dinh P-U, Cheng K. Cells and cell derivatives as drug carriers for targeted delivery. Med Drug Discov. 2019; 3: 100014. doi: 10.1016/j.medidd.2020.100014.
Salmena L, Lemmers B, Hakem A et al. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev. 2003; 17 (7): 883-895. doi: 10.1101/gad.1063703.
Hietbrink F, Bode LG, Riddez L, Leenen LPH, van Dijk MR. Triple diagnostics for early detection of ambivalent necrotizing fasciitis. World J Emerg Surg. 2016;11:51. doi: 10.1186/s13017-016-0108-z.
Afonso MB, Rodrigues PM, Simão AL et al. Activation of necroptosis in human and experimental cholestasis. Cell Death Dis. 2016; 7 (9): e2390-e2390. doi: 10.1038/cddis.2016.280.
Chu Q, Jiang Y, Zhang W et al. Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma. Oncotarget. 2016; 7 (51): 84658-84665. doi: 10.18632/oncotarget.12384.
Carmona-Rivera C, Purmalek MM, Moore E et al. A role for muscarinic receptors in neutrophil extracellular trap formation and levamisole-induced autoimmunity. JCI insight. 2017; 2 (3): 1-15. doi.org/10.1172/jci.insight.89780.
Orhon I, Fulvio R. Assays to monitor autophagy progression in cell cultures. Cells. 2017; 6 (3): 20. doi: 10.3390/cells6030020.
He H, Yang Y, Xiang Z et al. A sensitive IHC method for monitoring autophagy-specific markers in human tumor xenografts. J Biomarkers. 2016; 2016: 1-11. doi: 10.1155/2016/1274603.
Huang H, Chen A, Wang T et al. Detecting cell-in-cell structures in human tumor samples by E-cadherin/CD68/CD45 triple staining. Oncotarget. 2015; 6 (24): 20278-20287. doi: 10.18632/oncotarget.4275.
Prateep A, Sumkhemthong S, Karnsomwan W et al. Avicequinone B sensitizes Anoikis in human lung cancer cells. J Biomed Sci. 2018; 25 (1): 32. doi: 10.1186/s12929-018-0435-3.
Bárány T, Simon A, Szabó G et al. Oxidative stress-related parthanatos of circulating mononuclear leukocytes in heart failure. Oxid Med Cell Longev. 2017; 2017: 1249614. doi: 10.1155/2017/1249614.