2019, Number 4
<< Back Next >>
CorSalud 2019; 11 (4)
Advances in the knowledge of the molecular and cellular bases of congenital heart diseases. Second of two parts: Congenital heart defects
Taboada LN
Language: Spanish
References: 42
Page: 307-316
PDF size: 441.96 Kb.
ABSTRACT
Congenital heart defect is the most common birth defect in humans. We conducted a review of the medical literature with the aim of identifying the most recent advances in the knowledge of its molecular and cellular bases. The information obtained was divided into two parts: the first one emphasized on genes and cardiac morphogenesis, and this second part complements the previous one, with special focus on congenital heart defects.
REFERENCES
Taboada Lugo N. Avances en el conocimiento de las bases moleculares y celulares de las cardiopa-tías congénitas. Parte 1 de 2: Morfogénesis car-díaca. CorSalud [Internet]. 2019 [citado 18 Dic 2019];11(3):233-40. Disponible en: http://www.revcorsalud.sld.cu/index.php/cors/article/view/350/916
Postma AV, Bezzina CR, Christoffels VM. Genetics of congenital heart disease: The contribution of the noncoding regulatory genome. J Hum Genet. 2016;61(1):13-9.
Lalani SR, Belmont JW. Genetic basis of congeni-tal cardiovascular malformations. Eur J Med Ge-net. 2014;57(8):402‑13.
Edwards JJ, Gelb BD. Genetics of congenital heart disease. Curr Opin Cardiol. 2016;31(3):235-41.
Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki SH, Thienpont B, et al. Distinct genetic architectures for syndromic and nonsyndromic congeni-tal heart defects identified by exome sequencing. Nat Genet. 2016;48(9):1060-5.
Pawlak M, Niescierowicz K, Winata CL. Decoding the heart through next generation sequencing approaches. Genes (Basel) [Internet]. 2018 [cita-do 6 Oct 2018];9(6):289. Disponible en: https://www.mdpi.com/2073-4425/9/6/289/htm
LaHaye S, Corsmeier D, Basu M, Bowman JL, Fitzgerald-Butt S, Zender G, et al. Utilization of whole exome sequencing to identify causative mutations in familial congenital heart disease. Circ Cardiovasc Genet. 2016;9(4):320-9.
Bouma BJ, Mulder BJ. Changing landscape of congenital heart disease. Circ Res. 2017;120(6): 908-22.
Calcagni G, Unolt M, Digilio MC, Baban A, Versac-ci P, Tartaglia M, et al. Congenital heart disease and genetic syndromes: New insights into molec-ular mechanisms. Expert Rev Mol Diagn. 2017; 17(9):861-70.
Li F, Zhou J, Zhao DD, Yan P, Li X, Han Y, et al. Characterization of SMAD3 gene variants for pos-sible roles in ventricular septal defects and other congenital heart diseases. PLoS ONE [Internet]. 2015 [citado 10 Oct 2018];10(6):e0131542. Dispo-nible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131542
Cao Y, Wang J, Wei C, Hou Z, Li Y, Zou H, et al. Genetic variations of NKX2-5 in sporadic atrial septal defect and ventricular septal defect in Chi-nese Yunnan population. Gene. 2016;575(1):29‑33.
Moore KL, Persaud TVN. Aparato Cardiovascular. En: Embriología Clínica. 8ª ed. Barcelona: Else-vier; 2011. p. 286-336.
Han H, Chen Y, Liu G, Han Z, Zhao Z, Tang Y. GATA4 transgenic mice as an in vivo model of congenital heart disease. Int J Mol Med. 2015; 35(6):1545-53.
Pan Y, Wang ZG, Liu XY, Zhao H, Zhou N, Zheng GF, et al. A novel TBX1 loss-of-function mutation associated with congenital heart disease. Pediatr Cardiol. 2015;36(7):1400-10.
Shi LM, Tao JW, Qiu XB, Wang J, Yuan F, Xu L, et al. GATA5 loss‑of‑function mutations associated with congenital bicuspid aortic valve. Int J Mol Med. 2014;33(5):1219‑26.
Wang X, Ji W, Wang J, Zhao P, Guo Y, Xu R, et al. Identification of two novel GATA6 mutations in patients with nonsyndromic conotruncal heart defects. Mol Med Rep. 2014;10(2):743‑8.
Al‑Qattan MM, Abou Al‑Shaar.H. Molecular basis of the clinical features of Holt-Oram syndrome re-sulting from missense and extended protein mu-tations of the TBX5 gene as well as TBX5 intragen-ic duplications. Gene. 2015;560(2):129‑36.
Zhang M, Li X, Liu XY, Hou JY, Ni SH, Wang J, et al. TBX1 loss-of-function mutation contributes to congenital conotruncal defects. Exp Ther Med. 2018;15(1):447-53.
Qu XK, Qiu XB, Yuan F, Wang J, Zhao CM, Liu XY, et al. A novel NKX2.5 loss-of-function mutation associated with congenital bicuspid aortic valve. Am J Cardiol. 2014;114(12):1891‑5.
Zheng J, Li F, Liu J, Xu Z, Zhang H, Fu Q, et al. Investigation of somatic NKX2-5 mutations in Chi-nese children with congenital heart disease. Int J Med Sci. 2015;12(7):538‑43.
Huang RT, Wang J, Xue S, Qiu XB, Shi HY, Li RG, et al. TBX20 loss-of-function mutation responsible for familial tetralogy of Fallot or sporadic persis-tent truncus arteriosus. Int J Med Sci. 2017;14(4): 323-32.
Wang J, Mao JH, Ding KK, Xu WJ, Liu XY, Qiu XB, et al. A novel NKX2.6 mutation associated with congenital ventricular septal defect. Pediatr Car-diol. 2015;36(3):646‑56.
Monroy-Muñoz IE, Pérez-Hernández N, Vargas-Alarcón G, Ortiz-San Juan G, Buendía-Hernández A, Calderón-Colmenero J, et al. Cambiando el pa-radigma en las cardiopatías congénitas: de la ana-tomía a la etiología molecular. Gac Méd Mex. 2013;149(2):212-9.
Zhang W, Shen L, Deng Z, Ding Y, Mo X, Xu Z, et al. Novel missense variants of ZFPM2/FOG2 iden-tified in conotruncal heart defect patients do not impair interaction with GATA4. PLoS One [Inter-net]. 2014 [citado 6 Ene 2019];9(7):e102379. Dis-ponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102379
Liu AP, Chow PC, Lee PP, Mok GT, Tang WF, Lau ET, et al. Under-recognition of 22q11.2 deletion in adult Chinese patients with conotruncal anoma-lies: implications in transitional care. Eur J Med Genet. 2014;57(6):306‑11.
Chen M, Yang YS, Shih JC, Lin WH, Lee DJ, Lin YS, et al. Microdeletions/duplications involving TBX1 gene in fetuses with conotruncal heart de-fects which are negative for 22q11.2 deletion on fluorescence in-situ hybridization. Ultrasound Obstet Gynecol. 2014;43(4):396‑403.
High FA, Jain R, Stoller JZ, Antonucci NB, Lu MM, Loomes KM, et al. Murine Jagged1/Notch signal-ing in the second heart field orchestrates Fgf8 ex-pression and tissue-tissue interactions during out-flow tract development. J Clin Invest. 2009;119(7): 1986-96.
Chen XM, Guo K, Li H, Lu QF, Yang C, Yu Y, et al. A novel mutation KCNQ1p.Thr312del is responsi-ble for long QT syndrome type 1. Heart Vessels. 2019;34(1):177-88.
Matsusue A, Yuasa I, Umetsu K, Nakayashiki N, Dewa K, Nishimukai H, et al. The global distribu-tion of the p.R1193Q polymorphism in the SCN5A gene. Leg Med (Tokyo). 2016;19:72-6.
Oshima Y, Yamamoto T, Ishikawa T, Mishima H, Matsusue A, Umehara T, et al. Postmortem genet-ic analysis of sudden unexpected death in infan-cy: neonatal genetic screening may enable the prevention of sudden infant death. J Hum Genet. 2017;62(11):989-95.
Taboada Lugo N, Herrera Martínez M. Mecanis-mos epigéneticos y vía de señalización Notch en el origen de diferentes defectos congénitos. Me-dicentro [Internet]. 2018 [citado 9 Oct 2018];22(3): 197-207. Disponible en: http://medicentro.sld.cu/index.php/medicentro/article/view/2645/2213
Chen H, VanBuren V. A provisional gene regula-tory atlas for mouse heart development. PLoS ONE [Internet]. 2014 [citado 9 Oct 2018];9(1): e83364. Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083364
Hobbs CA, Cleves MA, MacLeod SL, Erickson SW, Tang X, Li J, et al. Conotruncal heart defects and common variants in maternal and fetal genes in folate, homocysteine, and transsulfuration path-ways. Birth Defects Res A Clin Mol Teratol. 2014;100(2):116-26.
Taboada Lugo N. Papel del ácido fólico, zinc y cobre en la prevención primaria de los defectos congénitos. Rev Cuban Med Gen Integr [Internet]. 2016 [citado 6 Oct 2018];32(4). Disponible en: http://www.revmgi.sld.cu/index.php/mgi/article/view/167/110
Serra-Juhé C, Cuscó I, Homs A, Flores R, Torán N, Pérez-Jurado LA. DNA methylation abnormalities in congenital heart disease. Epigenetics. 2015; 10(2):167-77.
Vecoli C, Pulignani S, Foffa I, Andreassi MG. Con-genital heart disease: The crossroads of genetics, epigenetics and environment. Curr Genomics. 2014;15(5):390-9.
Elsayed GM, Elsayed SM, Ezz-Elarab SS. Maternal MTHFR C677T genotype and septal defects in off-spring with Down syndrome: A pilot study. Egypt J Med Hum Genet. 2014;15(1):39-44.
Kerstjens-Frederikse WS, van de Laar IM, Vos YJ, Verhagen JM, Berger RM, Lichtenbelt KD, et al. Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med. 2016;18(9):914-23.
Deng X, Zhou J, Li FF, Yan P, Zhao EY, Hao L, et al. Characterization of nodal/TGF-lefty signaling pathway gene variants for possible roles in con-genital heart diseases. PLoS One [Internet]. 2014 [citado 9 Oct 2018];9(8):e104535. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128709/pdf/pone.0104535.pdf
Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, et al. Molecular pathophysiology of congenital long QT syndrome. Physiol Rev. 2017;97(1):89-134.
El-Sherif N, Turitto G, Boutjdir M. Congenital Long QT syndrome and torsade de pointes. Ann No-ninvasive Electrocardiol [Internet]. 2017 [citado 10 Ene 2019];22(6):e12481. Disponible en: https://doi.org/10.1111/anec.12481
Horie M. Extensive diversity of molecular mech-anisms underlying the congenital long QT syn-drome type 1. Can J Cardiol. 2018;34(9):1108-9.