2020, Number 4
<< Back Next >>
Med Crit 2020; 34 (4)
Measurement of the diameter of the optical nerve sheath by ultrasonography versus head computed tomography in patients with traumatic brain injury
Islas ÁRE, Coria LGVL, Montelongo FJ, Reyes PMM, Carmona DA, Suárez SA
Language: Spanish
References: 40
Page: 221-230
PDF size: 317.66 Kb.
ABSTRACT
Introduction: Traumatic brain injury is a cause of death and neurological sequelae in Mexico. The main cause of death for these group of patients is intracranial hypertension. There are invasive and non-invasive intracranial pressure monitoring techniques. Within the non-invasive techniques group, perhaps the most accessible one could be the bed-side measurement of the diameter of the optic nerve sheath. Our study pretends to find the most precise distance in millimeters to measure de optic nerve sheath compared to measurements performed by cranial computed tomography.
Material and methods: A prospective, observational, transversal, analytical study was made with patients admitted in the Neurologic Intensive Care Unit from the Hospital General de Ecatepec Las Americas, whose met the inclusion criteria. The study was performed between November the 1
st of 2018 and January the 31
th of 2019. We compared the diameter of the optic nerve sheath measured by ultrasonography at 3, 6 and 9 mm distance from each eye-ball versus the sizes obtained by cranial tomography at the same distances.
Results: No statistically significant difference was found by comparing ultrasonography acquired versus cranial tomography acquired optical nerve diameters, at none of the three mentioned distances (3, 6 and 9 mm) with a p value › 0.05 for all of them. The minor difference was found at 3 mm from the eye ball, but again, without statistical significance. Most of the studied patients were economically active men, and the most frequent injury found by cranial tomography was subarachnoid hemorrhage.
Conclusions: There is no statistically significant difference between the tomography measurement of optical nerve at 3, 6 and 9 mm and the measure of the optic nerve sheath at the same distances, in severe traumatic brain injury patients. Nevertheless, at 3 mm distance from the eyeball the minor difference was found between both techniques, the same distance traditionally described in consulted bibliography.
REFERENCES
Stocchetti N, Carbonara M, Citerio G, Ercole A, Skrifvars M, et al. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 2017;16:452-464.
Jallo J, Loftus C. Neurotrauma and critical care of the brain. 2nd ed. New York: Thieme Medical Publishers; 2018.
Carrillo-Esper R, Meza-Márquez JM. Trauma craneoencefálico. Rev Mex Anest. 2015;38(Suppl: 3):433-434.
Hamdan G. Trauma craneoencefálico severo: Parte I. Medicrit. 2005;2(7):107-148.
Advanced trauma life support. 10th ed. Chicago, IL: American College of Surgeons; 2018.
Bulger EM, Nathens AB, Rivara FP, et al. Management of severe head injury: institutional variations in care and effect on outcome. Crit Care Med. 2002;30:1870-1876.
Estrada F, Morales J, Tabla E, Solís B, Navarro H, et al. Neuro protección y traumatismo craneoencefálico. Rev Fac Med UNAM. 2012;55(4):16-29.
Alali AS, Temkin N, Barber J, et al. A clinical decision rule to predict intracranial hypertension in severe traumatic brain injury. J Neurosurg. 2018;131(2):612-619.
Part 2: Prognosis in penetrating brain injury. J Trauma. 2001;51(2 Suppl):S44-S86.
Mori LB, Díaz MF, Dorfam B, Sociedad Argentina de Terapia Intensiva; et al. Neurointensivismo: enfoque clínico, diagnóstico y terapéutica. Buenos Aires: Médica Panamericana; 2010.
Aguirre Rodríguez JI. Capítulo 61: Flujo sanguíneo cerebral, líquido cefalorraquídeo y metabolismo cerebral. En: Guyton AC, Hall JE. Tratado de fisiología médica. 10a ed. España: McGraw-Hill; 2000. pp. 855-862.
Schoser BG, Riemenschneider N, Hansen HC. The impact of raised intracranial pressure on cerebral venous hemodynamics: a prospective venous transcranial Doppler ultrasonography study. J Neurosurg. 1999;91(5):744-749.
Finfer S, Vincent J. Traumatic intracranial hypertension. N Engl J Med. 2014;370:2121-2130.
Balestreri M, Czosnyka M, Hutchinson P, Steiner LA, Hiler M, Smielewski P, et al. Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury. Neurocrit Care. 2006;4:8-13. https://doi.org/10.1385/NCC:4:1:008
Badri S, Chen J, Barber J, Temkin NR, Dikmen SS, Chesnut RM, et al. Mortality and long-term functional outcome associated with intracranial pressure after traumatic brain injury. Intensive Care Med. 2012;38:1800-1809. https://doi.org/10.1007/s00134-012-2655-4
Stocchetti N, Mass A. Traumatic intracranial hypertension. N Engl J Med. 2014;370:2121-2130.
Nordström CH, Reinstrup P, Xu W, Gardenfors A, Ungerstedt U. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003;98:809-814.
Stocchetti N, Zanaboni C, Colombo A, et al. Refractory intracranial hypertensionand “second-tier” therapies in traumatic brain injury. Intensive Care Med. 2008;34:461-467.
Vik A, Nag T, Fredriksli OA, et al. Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg. 2008;109:678-684.
Guillaume J, Janny P. Manométrie intracrânienne continue: intérêt de la méthode et premiers résultats. Rev Neurol (Paris). 1951;84:131-142.
Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36(149):1-193.
Ryder HW, Espey FF, Kimbell FD, et al. The mechanism of the change in cerebrospinal fluid pressure following an induced change in the volume of the fluid space. J Lab Clin Med. 1953;41(3):428-435.
Lundberg N, Troupp H, Lorin H. Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury. A preliminary report. J Neurosurg. 1965;22(6):581-590.
Stocchetti N, Le Roux P, Vespa P, Oddo M, Citerio G, et al. Clinical review: neuromonitoring- an update. Crit Care. 2013;17(1):201.
Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6-15.
Muñoz Hernández AM, Santos Bueso E. Nervio óptico. Anatomía y fisiología. Boletín Soc Oftalmo Madrid. 2013;53.
Ohle R, McIsaac S, Woo M, Perry J. Sonography of the optic nerve sheath diameter for detection of raised intracranial pressure compared to computed tomography. J Ultrasound Med. 2015;34(7):1285-1294.
Rincón J. Manual de ultrasonido en terapia intensiva y emergencias. 2a edición. Madrid: Editorial Prado; 2016.
Carrillo R, Rojo O, Cruz J, Romero J. Diámetro de la vaina del nervio óptico. Una herramienta para el monitoreo dinámico de la hipertensión intracraneana. Rev Asoc Mex Med Crit Ter Int. 2016;30(4):249-252.
Geeraerts T, Merceron S, Benhamou D, Vigué B, Duranteau J. Noninvasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med. 2008;34:2062-2067.
Dubost C, Motuel J, Geeraerts T. Mesure de la pression intracranienne sans capteur: comment et pour qui, non-invasive evaluation of intracranial pressure: how and for whom. Ann Fr Anesth Reanim. 2012;31(6):125-132.
Geeraerts T, Launey Y, Martin L, et al. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007;33(10):1704-1711.
Ballantyne SA, Neill GO, Hamilton R, Hollman AS. Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur J Ultrasound. 2002;15:145-149.
Zepeda A, Carrillo R. Medición ultrasonográfica del diámetro de la vaina del nervio óptico como marcador de hipertensión intracraneana. Rev Mex Anestesiol. 2017;40(1): 255-257.
Ochoa L, Cardozo A. Aplicaciones de la ultrasonografía en el sistema nervioso central para neuroanestesia y cuidado neurocrítico. Rev Colomb Anestesiol. 2015;43(4):314-320.
Blaivas M, Theodoro D, Sierzenski PR. Elevated intracranial pressure detected by bedside emergency ultrasonography of the optic nerve sheath. Acad Emerg Med. 2003;10(4):376-381.
Rajajee V, Fletcher JJ, Rochlen LR, Jacobs TL. Comparison of accuracy of optic nerve ultrasound for the detection of intracranial hypertension in the setting of acutely fluctuating vs stable intracranial pressure: post-hoc analysis of data from a prospective, blinded single center study. Crit Care. 2012;16(3):R79.
Kalantari H, Jaiswal R, Bruck I, Matari H, Ghobadi F, et al. Correlation of optic nerve sheath diameter measurements by computed tomography and magnetic resonance imaging. Am J Emerg Med. 2013;31(11):1595-1597.
Sekhon M, Griesdale D, Robba C, McGlashan N, Needham E. Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med. 2014;40:1267-1274.
Legrand A, Jeanjean P, Delanghe F, Johann P, Lecat B, Dupont H. Estimation of optic nerve sheath diameter on an initial brain computed tomography scan can contribute prognostic information in traumatic brain injury patients. Crit Care. 2013;17(2): R61. doi: 10.1186/cc12589.