2020, Number 5
<< Back Next >>
Med Int Mex 2020; 36 (5)
Treatment proposals for SARS-CoV-2 infection: Analyzing the evidence
Lasses OLA, Cataneo-Piña DJ, Correa-Cabrera RP, Álvarez-Gutiérrez L, Domínguez-Rivera DU
Language: Spanish
References: 63
Page: 670-687
PDF size: 261.85 Kb.
ABSTRACT
The pandemic caused by infection with the new SARS-CoV-2 coronavirus has brought
unprecedented mortality. Its high contagiousness and lethality, especially in vulnerable
patients, has led to an urgent search for drugs that have a potential benefit in controlling
this pandemic. Research to develop a new drug involves long periods of experimentation.
For this reason, scientists have focused on testing the use of pre-existing drugs,
even when their initial purpose is not an antiviral effect. In this review, we will analyze
the evidence of the different proposed treatment options, with emphasis on their
mechanism of action and the benefits found in observational studies.
REFERENCES
Alshami A, Douedi S, Varon J. Coronavirus in the arena: one more time. Curr Resp Med Rev 2020; 16: 1. DOI : 10. 2174/1573398X16999200302154418
Yang X, Yu Y, Xu J y col. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single centered, retrospective, observational study. Lancet Respir Med 2020; 8: e26. https://doi. org/10.1016/S2213-2600(20)30079-5
Zumla A, et al. Coronaviruses — drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15: 327-347.
Morse J, Lalonde T., Shiqing X, Liu W. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019- nCoV. Chem Bio Chem 2020 https://doi.org/10.1002/ cbic.202000047
De Clercq E. Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev 2016; 29: 695-747. DOI: 10.1128/ CMR.00102-15
Wan S, Xiang Y, Fang W, et al. Clinical features, and treatment of COVID-19 patients in northeast Chongqing. J Med Virol 2020;1-10. DOI:10.1002/jmv.25783
Frisk-Holmberg M, Bergqvist Y, Englund U. Chloroquine intoxication [letter]. Br J Clin Pharmacol 1983; 15: 502-503. doi: 10.1111/j.1365-2125.1983.tb01540.x
Colson P, Rolain JM, Raoult D, 2020. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents 2020. https://doi.org/10.1016/j.ijantimicag.2020.105923
Mehra MR, Desai SS, Ruschitzka D, Patel AN. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet 2020. https://doi.org/10.1016/S0140- 6736(20)31180-6.
Douedi S, Miskoff J. Novel coronavirus 2019 (COVID-19). A case report and review of treatments. Medicine 2020; 99: 19. doi: 10.1097/MD.0000000000020207
Parks J, Smith J. How to discover antiviral drugs quickly. N Engl J Med 2020; 382: 2261-2264. DOI: 10.1056/NEJMcibr2007042
De Clercq E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem. Asian J 2019; 14: 3962-3968. doi: 10.1002/asia.201900841
Goldman J, Lye D, Hui D, Marks K, Bruno R, Montejano M, et al. Remdesivir for 5 or 10 days in patients with severe Covid- 19. N Engl J Med 2020. doi: 10.1056/NEJMoa2015301
Wang M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019- nCoV) in vitro. Cell Res 2020. https://doi.org/10.1038/ s41422-020-0282-0
Hu J, Liu X, Xia S, et al. El disulfiram aprobado por la FDA inhibe la piroptosis al bloquear la formación de poros de gasdermina D. Nat Immunol 2020. https://doi. org/10.1038/s41590-020-0669-6
Homolak J, Kodvanj I. Widely available lysosome targeting agents should be considered as a potential therapy for COVID‐19. Preprints 2020 https://doi.org/10.20944/ preprints202003.0345
Gielen V, Johnston S, Edwards MR. Azithromycin induces anti‐viral responses in bronchial epithelial cells. Eur Respir J 2010; 36: 646-654. DOI: 10.1183/09031936.00095809
Cramer C, Patterson A, Alchakaki A, Soubani A. Immunomodulatory indications of azithromycin in respiratory disease: a concise review for the clinician. Postgrad Med 2017; 129: 493-499. https://doi.org/10.1080/00325481 .2017.1285677
Sandeep S, McGregor K. Energetics based modeling of hydroxychloroquine and azithromycin binding to the SARS‐CoV‐2 spike protein – ACE2 complex. ChemRxiv 2020. https://doi.org/10.26434/chemrxiv.12015792
Padmanabhan S. Potential dual therapeutic approach against SARS-CoV-2/COVID-19 with nitazoxanide and hydroxychloroquine. 2020 DOI: 10.13140/RG.2.2.28124.74882
Jasenosky LD, Cadena C, Mire CE, et al. The FDA-approved oral drug nitazoxanide amplifies host antiviral responses and inhibits Ebola virus. iScience 2019; 19: 1279-1290. https://doi.org/10.1016/j.isci.2019.07.003
FDA Approval of nitazoxanide. Department of Health and Human Services (2004). Available at: www.accessdata.fda. gov/drugsatfda_docs/nda/2004/21-497_Alinia_Approv. pdf (accessed April 2020).
Crump A. Ivermectin: enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations. J Antibiot (Tokyo) 2017; 70 (5): 495-505.
Krause RM, Buisson B, Bertrand S, Corringer PJ, Galzi JL, Changeux JP, Bertrand D. Ivermectin: a positive allosteric effector of the alpha7 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 1998; 53:283-94. DOI: 10.1124/ mol.53.2.283
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research 2020. https:// doi. org/10.1016/j.antiviral.2020.104787
Plaze M, Petit D, Simon- Lorieree B, Cachia C y col. Repositionnement de la chlorpromazine dans le traitement du COVID-19: étude recovery. L’encéphale 2020. https://doi. org/10.1016/j.encep.2020.04.010
Montealegre-Gómez SOL, et al. Colchicine: A potential therapeutic tool against COVID-19. Experience for five patients. Reumatol Clin 2020. https://doi.org/10.1016/j. reuma.2020.05.001
De Wilde AH, et al. Cyclosporin A inhibits the replication of diverse coronaviruses. J Gen Virol 2011; 92: 2542-2548. doi: 10.1099/vir.0.034983-0.
Miyara M, Tubach F, Martinez V, et al. Low incidence of daily active smokers in patients with symptomatic COVID19. Qeios 2020. https://doi.org/10.32388/WPP19W.3
Lauer S, Grantz K, Bi Q, Jones F, Zheng Q, Meredith H, Azman A, Reich N, Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 2020; 172 (9): 577-582. doi: 10.7326/M20-0504
Hikmet F, Méar L, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. bioRxiv 2020. DOI: 2020:2020.03.31.016048.
Xia H, Lazartigues E. Angiotensin-converting enzyme 2: central regulator for cardiovascular function. Curr Hypertens Rep 2010; 12: 170-5. doi: 10.1007/s11906-010-0105-7.
Oakes JM, Fuchs RM, Gardner JD, Lazartigues E, Yue X. Nicotine and the renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2018; 315: R895-R906. doi: 10.1152/ajpregu.00099.2018
Steardo L, Steardo L Jr, Zorec R, Verkhratsky A. Neuroinfection may potentially contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol (Oxf) 2020: e13473. https://doi.org/10.1111/apha.13473
Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421: 384-8.
Chen G, Wu D, Guo W y col. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest 2020: 130: 2620-2629. doi: 10.1172/JCI137244
Kooijman S, Meurs I, van der Stoep M, et al. Hematopoietic alpha 7 nicotinic acetylcholine receptor deficiency increases inflammation and platelet activation status but does not aggravate atherosclerosis. J Thromb Haemost 2015; 13: 126-35. doi: 10.1111/jth.12765.
van Westerloo DJ, Giebelen IA, Florquin S, et al. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J Infect Dis 2005; 191: 2138-48. doi: 10.1086/430323
Zia S, Ndoye A, Nguyen VT, Grando SA. Nicotine enhances expression of the alpha 3, alpha 4, alpha 5, and alpha 7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells. Res Commun Mol Pathol Pharmacol 1997; 97: 243-62.
Freedberg D, Conigliaro J, Sobieszczyk M, et al. Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 patients: A propensity score matched retrospective cohort study. Gastroenterology 2020. doi: 10.1053/j.gastro.2020.05.053
Grant W, Lahore H, McDonnell S, Baggerly C, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12: 988. doi: 10.3390/nu12040988
Ebadi M, Montano-Loza M. Perspective: improving vitamin D status in the management of COVID-19. Eur J Clin Nutr 2020; 74: 856-859. doi: 10.1038/s41430-020-0661-0
Mari P, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2 infection? Nutrients 2020; 12 (4): 988. doi: 10.1016/j.medidd.2020.100041
Hribar C, Cobbold P, Church F. Potential role of vitamin D in the elderly to resist COVID-19 and to slow progression of Parkinson’s disease. Brain Sciences 2020; 10: 284. doi: 10.3390/brainsci10050284
Martín-Giménez M, Inserra F, Tajer CD, et al. Lungs as target of COVID-19 infection: Protective common molecular mechanisms of vitamin D and melatonin as a new potential synergistic treatment. Life Sciences 2020; 254: 117808. https://doi.org/10.1016/j.lfs.2020.117808
Aygun H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn Schmiedebergs Arch Pharmacol 2020: 1-4. doi: 10.1007/s00210-020-01911-4
Carr A. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Critical Care (2020) 24: 133. https://doi.org/10.1186/s13054-020-02851-4.
Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Medicine in Drug Discovery 5 (2020) 100028
Skalny A, Rink L, Ajsuvakova O, et al. Zinc and respiratory tract infections: Perspectives for COVID 19 (Review). Int J Mol Med 2020. doi: 10.3892/ijmm.2020.4575
Zhang R, Wang X, Ni L, et al. COVID-19: Melatonin as a potential adjuvant treatment. Life Sciences 2020; 250: 117583. doi: 10.1016/j.lfs.2020.117583
Zambrelli E, Canevini M, Gambini O, et al. Delirium and sleep disturbances in COVIDe19: a possible role for melatonin in hospitalized patients? Sleep Medicine 2020; 70: 111. doi: 10.1016/j.sleep.2020.04.006
Shneider A, Kudriavtsev A, Vakhrusheva A. Can melatonin reduce the severity of COVID-19 pandemic? Int Rev Immunol 2020. DOI: 10.1080/08830185.2020.1756284
Montopoli M, Zumerle S, Vettor R, Rugge M, Zorzi M, Catapano CV, Carbone GM, Cavalli A, Pagano F, Ragazzi E, Prayer-Galetti T, Alimonti A. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (n=4532). Ann Oncol 2020. doi: https://doi.org/10.1016/j.annonc.2020.04.479
Yoshiharu Uno. Camostat mesilate therapy for COVID-19. Intern Emerg Med 2020: 1-2. doi: 10.1007/s11739-020-02345-9
US National Library of Medicine Clinical Trials https:// clinicaltrials.gov/ct2/home; https://clinicaltrials.gov/ct2/ results?cond=covid+19&term=stem+cells&cntry=ccry=& cry%20&%20dist%20=
Koehne G, Pérez-Fernández J. New stem cell therapy for COVID-19 finds success in clinical trial at Baptist Health. https://baptisthealth.net/baptist-health-news/new-stemcell- therapy-for-covid-19-finds-success-in-clinical-trial-atbaptist- health/
Moraghebi R, Kirkeby A, Chaves P, et al. Term amniotic fluid: an unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications. Stem Cell Res Ther 2017; 8: 190. https://doi.org/10.1186/ s13287-017-0582-6
Rojas M, Rodriguez Y, Monsalve D, et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev 2020. https://doi.org/10.1016/j.autrev. 2020.102554
Bloch E, Shoham S, Casadevall A, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020; 7: 138745. doi: 10.1172/ JCI138745
Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. PNAS 2020; 117: 9490-1497. https://doi.org/10.1073/pnas.2004168117
Zeng Q, Yu Z, Gou J, et al. Effect of convalescent plasma therapy on viral shedding and survival in patients with coronavirus disease 2019. J Infect Dis 2020. https://doi. org/10.1093/infdis/jiaa228
Feng-Cai Z, Yu-Hua L, Xu-Hua G, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomized, first-in-human trial. Lancet 2020. https:// doi.org/10.1016/ S0140-6736(20)31208-3
Li G, De Clercq. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Rev Drug Discov 2020; 19: 149-150. doi: 10.1038 / d41573-020-00016-0