2020, Number 1
<< Back Next >>
Revista Cubana de Salud Pública 2020; 46 (1)
Methods and challenges in the measurement of social inequalities in health of Cuba
Valdés SD, Ramis ARM, Pría BMC
Language: Spanish
References: 52
Page: 1-19
PDF size: 361.08 Kb.
ABSTRACT
Introduction: Individuals in positions of socio-economic disadvantage are at increased risk
for diseases. In Cuba, the social sciences research on social inequity from different
approaches, in which prevail the qualitative techniques with little disclosure of quantitative
methods that allow the location of inequalities.
Objective: To propose a procedure for measuring social inequalities in health in the Cuban
context with the use of quantitative methods.
Methods: Bibliographical review on the techniques and their fundamentals.
The methods were compared according to the methodological challenges, the structure of
the entry information, advantages and limiting factors, interpretation of the results,
possibility to capture inequality, and software available for each technique. There were
proposed stages for measuring the social inequalities in health according with the
comparison made, the methodological challenges posed in the researches, the
methodological alternatives proposed and the expertise of the researchers.
Conclusions: Among the limitations of the classical methods is the need to have data up to
the minimum level of analysis. Grouping has as methodological challenge the design of a
removal of features. Multilevel analysis assumes that the contextual effects are the same for
all individuals within groups over time. This difficulty is solved by the analysis of social scripts. The requirement of longitudinal data is the biggest handicap of this technique for its
use in Cuba.
REFERENCES
Kawachi I, Subramanian SV, Almeida-Filho N. A glossary for health inequalities. J Epidemiol Community Heal. 2002;56:647-52.
Whitehead M, Dahlgren G. Concepts and Principles for Tackling Social Inequities in Health: Levelling up Part 1; 2006.
Ramírez A, López C. A propósito de un sistema de monitoreo de la equidad en salud en Cuba. Rev Cub Sal Públ. 2005;31(2).
Grupo Básico de Trabajo. Proyecto “Monitoreo de Equidad y Salud en Cuba.” Escuela Nacional de Salud Pública; 2001.
Castañeda IE. Construcción de indicadores sintéticos para medir diferencias de género en el contexto social cubano [tesis en opción al grado de Doctora en Ciencias de la Salud]. [La Habana]: Universidad de Ciencias Médicas de La Habana; 2005.
Pría M del C. Diseño de una metodología para el Análisis de la Situación de Salud municipal según condiciones de vida. Rev Cuba Med Gen Integr. 2006;22(4).
Corral A, Pría M del C. Indicadores para la caracterización de provincias según condiciones de vida. Rev Cub Sal Públ. 2014;30(4):402-15.
Íñiguez L. Territorio y contextos en la salud de la población. Rev Cub Sal Públ. 2008;34(1).
Méndez E, Lloret M del C. Índice de desarrollo humano a nivel territorial en Cuba. Período 1985-2001. Rev Cub Sal Públ. 2005;31(2).
Zabala M del C, Echevarría D, Muñoz MR, Fundora GE. Retos para la equidad social en el proceso de actualización del modelo económico cubano. Editorial de Ciencias Sociales; 2015.
Espina M, Echevarría D. Cuba: los correlatos socioculturales del cambio económico. La Habana: Editorial de Ciencias Sociales; 2015.
Bacallao J. Ensayo crítico acerca de la medición de las desigualdades sociales en salud. La Habana: Editorial Ciencias Médicas; 2015.
Díaz-Perera G. Acercamiento a determinantes contextuales de la aterosclerosis y sus factores de riesgo [tesis de Doctorado en Ciencias de la Salud] [La Habana]: Universidad de Ciencias Médicas de La Habana, Centro de Investigación y Referencia de Aterosclerosis de La Habana; 2011.
Krieger N. Glosario de epidemiología social. Rev Panam Salud Pública. 2002;11(5- 6):480-90.
Kondo N, Sembajwe G, Kawachi I, Dam RM Van, Subramanian S V, Yamagata Z. Income inequality, mortality, and self-rated health: meta-analysis of multilevel studies. BMJ. 2009;339(b4471):1178-82.
Martín JJ, Karlsdotter K, Puerto M del. Análisis multinivel de la renta y las desigualdades de renta y salud en España. Centro de Estudios Andaluces; 2011.
Montero M, Castells E, Lantigua I. Modelos multinivel: Una aplicación a datos longitudinales en una investigación médica. Rev Investig Operacional. 2007;28(2):170-8.
Chang M, Cañizares M. Consumo de bebidas alcohólicas y ambiente social. Un enfoque multinivel. Rev Cubana Hig Epidemiol. 2010;48(2):114-2.
Shanahan MJ, Mortimer JT, Kirkpatrick M. Handbook of the Life Course. Vol. II. Springer International Publishing Switzerland; 2016.
Abbott A, Forrest J. Optimal Matching Methods for Historical Sequences. J Interdiscip Hist. 1986;16(3):471-4.
Cornwell B. Social sequence analysis: Methods and applications. Social Sequence Analysis: Methods and Applications; 2015.
Hougham GW, Ham SA, Ruhnke GW, Schulwolf E, Auerbach AD, Schnipper JL, et al. Sequence Patterns in the Resolution of Clinical Instabilities in Community-Acquired Pneumonia and Association with Outcomes. J Gen Intern Med. 2013;29(4):563-71.
Le Meur N, Gao F, Bayat S. Mining care trajectories using health administrative information systems: the use of state sequence analysis to assess disparities in prenatal care consumption. BMC Health Serv Res. 2015;15(200):1-10.
Ganjour O, Gauthier J-A, Goff J-M Le. Gender inequality regarding retirement benefits in Switzerland. In: Ritschard G, Studer M, editors. International Conference on Sequence Analysis and Related Methods (LaCOSA II); 2016. p. 693-716.
Wagstaff A, Paci P, Doorslaer E Van. On the measurement of inequalities in health. Soc Sci Med. 1991;33(5):545-57.
Schneider MC, Castillo C, Bacallao J, Loyola E, Mujica OJ, Vidaurre M. Métodos de medición de las desigualdades de salud. Rev Panam Salud Pública. 2002;12(6):398-415.
Schneider MC, Castillo C, Bacallao J, Loyola E, Mujica OJ, Vidaurre M. Resumen de los indicadores más utilizados para la medición de desigualdades en salud. Rev Panam Salud Pública. 2002;12(6):462-4.
Lynch J, Harper S. Midiendo Desigualdades en Salud. Centro de Epidemiología Social y Salud Poblacional. Departamento de Epidemiología. [CD ROM]. Michigan: Universidad de Michigan; 2010.
PAHO. The health situation. In: Annual Report of the Director Edición de 1996. Washington, DC: Pan American Health Organization; 1997.
Santiago Pérez MI, Hervada Vidal X, Naveira Barbeito G, Silva LC, Fariñas H, Vázquez E, et al. El programa epidat: usos y perspectivas. Rev Panam Salud Pública. 2010 Jan;27(1):80-2.
Han J, Kamber M. Data Mining: Concepts and Techniques. 2nd ed. Elsevier Inc.; 2006.
Ward JH. Hierarchical Grouping to Optimize an Objective Function. J Am Stat Assoc. 1963;58(301):236-44.
Hair JF, Anderson RE, Tatham RL, Black WC. Análisis Multivariante. 5th ed. Madrid: Prentice Hall; 1999.
Cuadras CM. Nuevos métodos de análisis multivariante. Barcelona, España: CMC Editions; 2008.
Jain AK, Murty MN, Flynn PJ. Data Clustering : A Review. ACM Comput Surv. 1999;31(3):264-323.
Abbas OA. Comparisons Between Data Clustering Algorithms. Int Arab J Inf Technol. 2008;5(3):320-5.
Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53-65.
Aparicio A, Morera M. La conveniencia del análisis multinivel para la investigación en salud: Una aplicación para Costa Rica. Población y Salud en Mesoamérica. 2007;4(2):1-23.
Davis K, Taylor B, Furniss D. Narrative accounts of tracking the rural domestic violence survivors’ journey: A feminist approach. Health Care Women Int. 2001;22(4):333-47.
Rasbash J, Steele F, Browne WJ, Goldstein H. A User’s Guide to MLwiN 2.0. United Kingdom: University of Bristol; 2009.
Barbara M. Byrne. Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming. United Kingdom: Taylor and Francis Group; 2012.
Bliese P. Multilevel Modeling in R (2.5): A Brief Introduction to R, the multilevel package and the nlme package. R Development Core Team; 2013.
Blanchard P, Bühlmann F, Gauthier J-A. Advances in Sequence Analysis: Theory, Method, Applications. Luxemburgo: Springer; 2014.
Chaudhry S, Jin L, Meltzer D. Use of a Self-Report-Generated Charlson Comorbidity Index for Predicting Mortality. Med Care. 2005;43(6):607-15.
Hougham GW, Ham SA, Ruhnke GW, Schulwolf E, Auerbach AD, Schnipper JL, et al. Online Supplement to accompany: Sequence Patterns in the Resolution of Clinical Instabilities in Community ‐ Acquired Pneumonia and Association with Outcomes. J Gen Intern Med. 2013;29(4):1-9.
Dlouhy K, Biemann T. Optimal matching analysis in career research: A review and some best-practice recommendations. J Vocat Behav. 2015;90:163-73.
Ritschard G, Gabadinho A, Nicolas M, Studer M. Mining event histories: A social science perspective. Int J Data Mining, Model Manag. 2008;1(1):68-90.
Gabadinho A, Ritschard G, Studer M, Müller NS. Mining sequence data in R with the TraMineR package: A user’s guide. vol. 1. University of Geneva; 2010.
Yalonetzky G. A dissimilarity index of multidimensional inequality. J Econ Inequal. 2012;(10):343-73.
Qian G, Wu Y, Shao Q. A procedure for estimating the number of clusters in logistic regression clustering. J Classif. 2009;(26):183-99.
Mielck A, Vogelmann M, Leidl R. Health-related quality of life and socioeconomic status: inequalities among adults with a chronic disease. 2014;12(58).
Abbott A. Time Matters: On Theory and Method. Chicago: The University of Chicago; 2001.