2020, Number 3
<< Back Next >>
Rev Mex Med Forense 2020; 5 (3)
Numerical Simulation and Mathematical Modeling of the spread of Covid 19 in the state of Veracruz
Ortigoza G, Lorandi A, Neri I
Language: Spanish
References: 15
Page: 21-37
PDF size: 1268.99 Kb.
ABSTRACT
This work shows the use of different mathematical models to simulate possible scenarios for the spread of Covid 19 in the state of Veracruz; important quantities are obtained in epidemiology, such as the basic number of reproduction, as well as the transmission, recovery and latency rates. The data reported by the Veracruz health secretary are inputs to compartment models (S = susceptible, I = Infected, E = exposed, R = recovered), written as systems of nonlinear differential equations; the parameters are found using a least squares method fitting the differential equations model to the data. Likewise, results are presented with learning machine algorithms applied to the data and an extension of the temporal model to a spatio-temporal model of a cellular automaton.
REFERENCES
Gobierno_del_Estado_de_Veracruz. Coronavirus Noticias. [Online] Acceso 19 de juniode 2020. Disponible en: http://coronavirus.veracruz.gob.mx/category/noticias/.
Brauer F, van-den-Driessche P, Wu J. Compartmental Models in Epidemiology. En Lecture notes in mathematical epidemiology. Berlin, Heidelberg,: Springer Verlag; 2008. p. 19 - 76.
Martcheva M. An introduction to mathematical epidemiology New York: Springer Verlag; 2015.
Brauer F, van-den-DriesscheAllen P, Wu J. Mathematical epidemiology. En Mathematical Epidemiology. Berlin: Springer Verlag; 2008. p. 19 - 76.
Bacaër N. McKendrick and Kermack on epidemic modelling (1926–1927). En A Short History of Mathematical Population Dynamics. London: Springer Verlag; 2011. p. 89 - 96.
van-den-Driessche P. Reproduction numbers of infectious disease models. Infectious Disease Modelling. 2017; 2(3): p. 288 - 303.
Chowell G, Brauer F. The basic reproduction number of infectious diseases: computation and estimation using compartmental epidemic models. En Mathematical and statistical estimation approaches in epidemiology. Dordrecht: Springer Verlag; 2009. p. 1 - 30.
Chowell G. Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling. 2017; 2(3): p. 379 - 398.
INEGI. Cuentame (Veracruz). [Online] Acceso 18 de juniode 2020. Disponible en: http://cuentame.inegi.org.mx/monografias/informacion/ver/poblacion/.
Batista M. Estimation of the final size of the second phase of coronavirus epidemic by the logistic model. MedRxiv (Internet). 2020;: p. 1 - 11.
Wolfram. Wolfram Machine learning manual. [Online].; 2020. Acceso 19 de junio de 2020. Disponible en: https://reference.wolfram.com/language/guide/MachineLearning.html.
Ying-Hen H, Fisman DN, Wu J. On epidemic modeling in real time: An application to the 2009 Novel A (H1N1) influenza outbreak in Canada. BMC research notes. 2010; 3(1): p. 283.
Hsieh YH. Richards model: a simple procedure for real-time prediction of outbreak severity. Modeling and dynamics of infectious diseases. 2009;: p. 216 - 236.
Ortigoza G, Brauer F, Neri I. Modelling and simulating Chikungunya. Infectious Disease. 2020; 5: p. 197 - 220.
Piccolomiini EL, Zama F. Monitoring Italian COVID-19 spread by an adaptive SEIRD model. medRxiv. 2020.