2017, Number 01-02
<< Back Next >>
Medicina & Laboratorio 2017; 23 (01-02)
Phenotypic detection of methicillin, erythromycin and clindamycin susceptibility of Staphylococcus spp. isolates from a hospital in Valledupar (Colombia)
Morales-Parra GI, Yaneth-Giovanetti MC, Zuleta-Hernández AB, Núñez-Carrillo ML
Language: Spanish
References: 35
Page: 65-74
PDF size: 549.85 Kb.
ABSTRACT
Introduction: Infections by multidrug-resistant Staphylococcus spp. are associated with increased
morbidity-mortality of affected patients.
Objective: To characterize resistance phenotypes to methicillin,
macrolides, and lincosamides of 50 clinical isolates of Staphylococcus spp. from patients of a
hospital in the city of Valledupar (Colombia).
Materials and methods: Methicillin, erythromycin, and
clindamycin susceptibility tests were performed by agar diffusion and broth microdilution methods.
Agar dilution technique was used to determine methicillin resistance and double-disk diffusion method
(D-Test) to evaluate the inducible clindamycin resistance.
Results: Staphylococcus spp. isolates were
obtained most frequently from injuries (58%) and urine (12%) and from areas of external consultation
(40%), surgery (24%), and emergency (10%). Staphylococcus aureus was isolated in 68%, followed
by Staphylococcus epidermidis (14%), Staphylococcus lugdunensis (8%), Staphylococcus saprophyticus
(4%), Staphylococcus haemolyticus (4%), and Staphylococcus hominis (2%). Methicillin resistance was
found in 36% of Staphylococcus aureus isolates and 8% of coagulase-negative staphylococci. A total
of five resistance phenotypes were observed being the clinical phenotype sensitive to erythromycin
and clindamycin the most frequent (54%) followed by the resistance phenotype to both antibiotics
(14%). Inducible clindamycin resistance was 12%, finding in 8% of Staphylococcus aureus isolates and
4% of Staphylococcus epidermidis isolates.
Conclusions: D-test is essential to detect the phenotype of
inducible clindamycin resistance in Staphylococcus spp. isolates and to avoid its administration facing
imminent treatment failure.
REFERENCES
Cervantes-García E, García-González R, Salazar-Schettino PM. Staphylococcus aureus asociado a la comunidad (CA-MRSA). Rev Latinoam Patol Clin Med Lab 2015; 62: 100-111.
Sanchez M, Hernández O, Velasquez LA, Rivas D, Marín A, González LA, et al. Caracterización del gen mecA de Staphylococcus aureus resistentes a meticilina aislados de tres grupos poblacionales de la ciudad de Medellín. Infectio 2013; 17: 66-72.
Vivek JS, Rajesh GN, Mukesh S, Manpreet K, Misra RN, Matnani GB, et al. Prevalence of inducible Clindamycin resistance among community-and hospital-associated Staphylococcus aureus isolates in a tertiary care hospital in India. Biomedical Res 2011; 22: 465-469.
Coutinho Vde L, Paiva RM, Reiter KC, de-Paris F, Barth AL, Machado AB. Distribution of erm genes and low prevalence of inducible resistance to clindamycin among staphylococci isolates. Braz J Infect Dis 2010; 14: 564-568.
Tamariz-Ortiz JH, Cruz-Quintanilla J, Atencia-Porras A, Figueroa-Tataje J, Horna-Quintana G, Guerra-Allison H. Resistencia a clindamicina inducida por eritromicina en Staphylococcus aureus aislados de tres hospitales de Lima, Perú. Acta Médica Peruana 2009; 26: 12-16.
Patel M, Waites KB, Moser SA, Cloud GA, Hoesley CJ. Prevalence of inducible clindamycin resistance among community- and hospital-associated Staphylococcus aureus isolates. J Clin Microbiol 2006; 44: 2481-2484.
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. CLSI document M100-S25. Pensilvania, Estados Unidos: Clinical and Laboratory Standards Institute; 2015.
Mallikarjun K, Parameshwar S, Halesh LH, Siddesh KC. Detection of inducible clindamycin resistance in staphylococcus aureus and CONS at tertiary care hospital Indian J Microbiol Res 2015; 2: 192-197.
Morales GI, Yaneth MC, Chávez KM. Caracterización de la resistencia in vitro a diferentes antimicrobianos en cepas de Staphylococcus spp. en una institución hospitalaria de la ciudad de Valledupar entre enero y julio de 2009. Rev Cienc Salud 2012; 10: 169-177.
Venkata Raghavendra Rao A, Kavitha A, Seetha KS. Prevalence of inducible clindamycin resistance among clinical isolates of Staphylococci. NJBMS 2012; 3: 68-71.
European Centre for Disease Prevention and Control. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals. Estocolmo: ECDC. 2013.
Moellering RC, Jr. MRSA: the first half century. J Antimicrob Chemother 2012; 67: 4-11.
Fariña N, Carpinelli L, Samudio M, Guillén R, Laspina F, Sanabria R, et al. Staphylococcus coagulasa-negativa clínicamente significativos: Especies más frecuentes y factores de virulencia. Rev Chil Infectol 2013; 30: 480-488.
Iorio NL, Ferreira RB, Schuenck RP, Malvar KL, Brilhante AP, Nunes AP, et al. Simplified and reliable scheme for species-level identification of Staphylococcus clinical isolates. J Clin Microbiol 2007; 45: 2564-2569.
Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl 2013: 1-51.
Costerton JW, Post JC, Ehrlich GD, Hu FZ, Kreft R, Nistico L, et al. New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol Med Microbiol 2011; 61: 133-140.
Cercenado E. Staphylococcus lugdunensis: un estafilococo coagulasa negativo diferente de los demás. Enferm Infecc Microbiol Clin 2009; 27: 139-142.
Mariem BJ, Ito T, Zhang M, Jin J, Li S, Ilhem BB, et al. Molecular characterization of methicillin-resistant Panton- valentine leukocidin positive staphylococcus aureus clones disseminating in Tunisian hospitals and in the community. BMC Microbiol 2013; 13: 2.
Pérez N, Pavas N, Rodríguez EI. Resistencia de Staphylococcus aureus a los antibióticos en un hospital de la orinoquia colombiana. Infectio 2010; 14: 167-173.
Prada-Peñaranda C, Holguín-Moreno A-V, González- Barrios A-F, Vives-Flórez M-J. Fagoterapia, alternativa para el control de las infecciones bacterianas. Perspectivas en Colombia. Univ Sci 2015; 20: 43-59.
Cunha Mde L, Rugolo LM, Lopes CA. Study of virulence factors in coagulase-negative staphylococci isolated from newborns. Mem Inst Oswaldo Cruz 2006; 101: 661-668.
Arslan S, Ozkardes F. Slime production and antibiotic susceptibility in staphylococci isolated from clinical samples. Mem Inst Oswaldo Cruz 2007; 102: 29-33.
Deotale V, Mendiratta DK, Raut U, Narang P. Inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Indian J Med Microbiol 2010; 28: 124-126.
Castellano-González MJ, Perozo-Mena AJ, Molero- Cubillán MdJ, Montero-Araujo SdC, Primera-Rodríguez FJ. Resistencia a la clindamicina inducida por eritromicina en cepas de Staphylococcus aureus de origen clínico. Kasmera 2015; 43: 34-45.
Bottega A, Rodrigues Mde A, Carvalho FA, Wagner TF, Leal IA, Santos SO, et al. Evaluation of constitutive and inducible resistance to clindamycin in clinical samples of Staphylococcus aureus from a tertiary hospital. Rev Soc Bras Med Trop 2014; 47: 589-592.
Merino-Díaz L, de la Casa ÁC, Torres-Sánchez MJ, Aznar-Martín J. Detección de resistencia inducible a clindamicina en aislados cutáneos de Staphylococcus spp. por métodos fenotípicos y genotípicos. Enferm Infecc Microbiol Clin 2007; 25: 77-81.
Akhter S, Haque SZ, Rahman MM. Inducible clindamycin resistance among staphylococci isolated from clinical samples in an urban hospital of Dhaka City. Ibrahim Med Coll J 2011; 5: 6-8.
Regha IR, Harichandran D, Sulekha B. Inducible Clindamycin Resistance among Clinical Isolates of Staphylococcus aureus in a Tertiary Care Centre, Kerala, India. Int J Curr Microbiol App Sci 2016; 5: 929-934.
Kumurya AS. Detection of Inducible Clindamycin Resistance among Staphylococcal Isolates from Different Clinical Specimens in Northwestern Nigeria. International Journal of Preventive Medicine Research 2015; 1: 35-39.
Sandrea-Toledo LB, Piña-Reyes EJ, Paz-Montes A, Torres-Urdaneta EL. Determinación de la resistencia a meticilina y eritromicina de cepas de Staphylococcus aureus aisladas en un hospital del estado Zulia. Rev Soc Ven Microbiol 2012; 32: 88-94.
Ramirez-Salinas Y, Zayas-Illas A, Collado-Yero R, Cabrera-Nuñez MV, Zayas-Martinez GI, Cuza-Turcáz C. Detección de resistencia inducible a clindamicina de Staphylococcus aureus resistente a meticilina. Havana, Cuba: 8th Cuban Congress on Microbiology and Parasitology, 5th National Congress on Tropical Medicine and 5th International Symposium on HIV/aids infection in Cuba. 14 al 16 de octubre de 2014.
Afridi FI, Zeb M, Hussain A, Farooqi BJ, Murtuza G. Inducible Clindamycin Resistance in Staphylococcus Species. J Coll Physicians Surg Pak 2014; 24: 481-484.
Moosavian M, Shoja S, Rostami S, Torabipour M, Farshadzadeh Z. Inducible clindamycin resistance in clinical isolates of Staphylococcus aureus due to erm genes, Iran. Iran J Microbiol 2014; 6: 421-427.
Prabhu K, Rao S, Rao V. Inducible Clindamycin Resistance in Staphylococcus aureus Isolated from Clinical Samples. J Lab Physicians 2011; 3: 25-27.
Sasirekha B, Usha MS, Amruta JA, Ankit S, Brinda N, Divya R. Incidence of constitutive and inducible clindamycin resistance among hospital-associated Staphylococcus aureus. 3 Biotech 2014; 4: 85-89.