2020, Number 4
<< Back Next >>
Rev Fac Med UNAM 2020; 63 (4)
Characteristics and Specialization of the Immune Response in COVID-19
Suárez RA, Villegas VCA
Language: Spanish
References: 57
Page: 7-18
PDF size: 327.77 Kb.
ABSTRACT
The outbreak of coronavirus pneumonia in Wuhan, China,
became a pandemic on March 11, 2020. It has caused almost
4 million confirmed cases worldwide, with more than
270,000 deaths. Coronavirus is an enveloped RNA virus of
the β-coronavirus genus distributed in birds, humans, and
other mammals. The World Health Organization has named
the new disease COVID-19. The scientific community is look-
ing for evidence that can lead to a better understanding of
the infection and the immune response (IR), prognostic and
therapeutic predictors, effective treatments and vaccines.
The objective of this review was to compile updated scientific
evidence of the IR to COVID-19, in order to guide professionals
with solutions that have a clinical impact. The most
important elements involve innate immunity with failures
in the interferon system in the early stages of the infection
and a sustained increase in proinflammatory interleukins.
This can end in a potentially fatal cytokine storm. The infiltration
of neutrophils and macrophages at the alveolar
level, accompanied by neutrophilia, is very characteristic.
Lymphopenia is evident at the adaptive immunity level, that,
depending on the degree, can indicate the severity of the
disease. Understanding the temporal sequence of the IR is
crucial for choosing the appropriate and effective therapies,
especially when selecting which type of anti-inflammatory
drugs can be used and the frequency of the dosage. Due
to the fact that it is difficult to determine when they will be
clearly beneficial, not harmful to the IR and not too late, due
to the irreversibility of the process.
REFERENCES
Huang Ch, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506.
Wang L, Wang Y, Ye D, Liu Q. A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence. Int J Antimicrobial Agent. 2020. De próxima aparición.
Sun J, He W-T, Wang L, Lai A, Ji X, Zhai X, et al. COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. Trends Mol Med. 2020;26(5):483-95.
Organización Mundial de la Salud [Internet]. Acceso/Director General de la OMS/Discursos del Director General de la OMS/details. [actualizado 8 Mayo 2020; citado 8 Mayo 2020]. Alocución de apertura del Director General de la OMS en la rueda de prensa sobre la COVID-19 celebrada el 11 de marzo de 2020. Disponible en: https://www.who.int/ es/dg/speeches/detail/who-director-general-s-opening-remarks- at-the-media-briefing-on-covid-19---11-march-2020
Ministerio de Salud Pública de la República de Cuba [Internet]. COVID/NOTICIAS [actualizado 8 Mayo 2020; citado 8 Mayo 2020]. Parte de cierre del día 7 de mayo a las 12 de la noche. Disponible en: https://salud.msp.gob. cu/?p=5158
Chuan Q, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020. De próxima aparición.
Han Q, Lin Q, Jin Sh, You L. Coronavirus 2019-nCoV: A brief perspective from the front line. J Infect. 2020;80:373-7.
Lai Ch, Shih T, Ko W, Tang H, Hsueh P. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenge. Int J Antimicrobial Agent. 2020;55:105924.
Adnan ShM, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91-8.
Wu D, Wu T, Liu Q, Yang Zh. The SARS-CoV-2 outbreak: what we know. Int J Infect Dis. 2020;94:44-8.
Fuk-Woo ChJ, Kok K, Zhu Zh, Chu H, Kai-Wang TK, Yuan Sh, et al. Genomic characterization of the 2019 novel humanpathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emer Microbes Infect. 2020;9(1):221-36.
Rodríguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña Rh, Holguin-Rivera Y, Escalera- Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34.
Heshui Shi, Han Xiaoyu, Jiang Nanchuan, Cao Yukun, Alwalid Osamah, Gu Jin, Fan Yanqing, Zheng Chuansheng. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20:425-34.
Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human Coronavirus genomes. Trends Microbiol. 2017;25(1):001.
Jonsdottir HR., Dijkman R. Coronaviruses and the human airway: a universal system for virus-host interaction studies. Virol J. 2016;13:24.
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13.
Li X, Geng M, Peng Y, Meng L, Lu Sh. Molecular immune pathogenesis and diagnosis of COVID-19, J Pharmaceutical Analysis. 2020;10(2):102-8.
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846-8.
Chen Y, Guo Y, Pan Y, Zhao ZhJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020;525(1):135-40.
Fung S, Yuen K, Ye Z, Chan Ch, Jin D. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emer Microbes Infec. 2020;9(1):558-70.
Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;180:281-92.
Pambuccian SE. The COVID-19 pandemic: Implications for the cytology laboratory. J Am Society Cytopathol. 2020;9(3):202-11.
Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Immunology. 2005;5:917-27.
Li J-Y, You Zh, Wang Q, Zhou Z-J, Qiu Y, Luo R, et al. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes Infect. 2020;22:80-5.
Lupia T, Scabini S, Mornese PS, Di Perri G, Giuseppe DRF, Corcione S. 2019 novel coronavirus (2019-nCoV) outbreak: A new challenge. J Global Antimicrobial Resist. 2020;21:22-7.
Leth-Larsen R, Zhong F, Chow VTK, Holmskov U, Lu J. The SARS coronavirus spike glycoprotein is selectively recognized by lung surfactant protein D and activates macrophages. Immunobiology. 2007;212:201-11.
Yuan M, Wu NC, Zhu X, Lee ChD, So RTY, Lv H, et al. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020;368(6491):630-3.
Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection: a review of immune changes in patients with viral pneumonia. Emer Microbes Infect. 2020;9(1):727-32.
Xu Zh, Shi L, Wang Y, Zhang J, Huang L, Zhang Ch, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420-22.
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmunity. 2020;109:102433.
Ding D, Zhu C, Yao W. A cured patient with 2019-nCoV pneumonia. Am J Med. 2020. De próxima aparición.
Arshad ASh, Baloch M, Ahmed N, Arshad AA, Iqbal A. The outbreak of Coronavirus Disease 2019 (COVID-19)— An emerging global health threat. J Infect Public Health. 2020; 13(4):644-6.
Prompetchara E, Ketloy Ch, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9.
Zhang Y, Yu L, Tang LL, Zhu M, Jin Y, Wang Zh, et al. A Promising Anti-Cytokine Storm Targeted Therapy for COVID-19: The Artificial-Liver Blood-Purification System. Engineering. 2020. De próxima aparición.
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-69.
Inmunidad Innata. En: Abbas AK, Litchman AH, Pillai S. Inmunología celular y molecular. 8va. ed. Barcelona: Elsevier España; 2015, p. 51-86.
Blanco O. Propiedades antiinflamatorias del surfactante pulmonar y su aplicación en la clínica. Biotecnología Aplicada. 2004;21:70-6.
Funk CJ, Wang J, Ito Y, Travanty EA, Voelker DR, Holmes KV, et al. Infection of human alveolar macrophages by human coronavirus strain 229E. J General Virol. 2012;93:494-503.
Marín-Sánchez O, Vivas-Ruiz D, Neira M, Sandoval GA, Marín-Machuca O, Rodriguez-Landauro AJ, et al. Role of type I and type III interferons: A review of concepts. Ágora Rev Cient. 2019;06(2):e6.
Qian Zh, Travanty EA, Oko L, Edeen K, Berglund A, Wang J, et al. Innate Immune Response of Human Alveolar Type II Cells Infected with Severe Acute Respiratory Syndrome–Coronavirus. Am J Respir Cell Mol Biol. 2012;48(6):742-48.
Yilla M, Harcourt BH, Hickman CJ, McGrew M, Tamin A, Goldsmith CS, et al. SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus Res. 2005;107:93-101.
Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):e30-e1.
Schulert GS, Grom AA. Macrophage activation syndrome and cytokine directed therapies. Best Pract Res Clin Rheumatol. 2014;28(2):277-92.
Li X, Geng M, Peng Y, Meng L, Lu Sh. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharmaceutical Analysis. 2020;10(2):102-8.
Wong CK, Lam CWK, Wu AKL, IP WK, Lee NLS, Chan HIS, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136:95-103.
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529-39.
Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol, Immunol and Infect. 2020. De próxima aparición.
Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):e30-e1.
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17:533-5.
Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang Y, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Señal Transducción Objetivo Ther. 2020;5:33.
Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res. 2014;59:118-28.
Thevarajan I, Nguyen TH, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med. 2020;26:453-5.
Wan S, Yi Q, Fan Sh, Lv J, Zhang X, Guo L, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized 2 patients with 2019 novel coronavirus pneumonia (NCP). MedRxiv. 2020. De próxima aparición.
Chen H, Hou J, Jiang X, Ma Sh, Meng M, Wang B, et al. Response of Memory CD8+ T Cells to Severe Acute Respiratory Syndrome (SARS) Coronavirus in Recovered SARS Patients and Healthy Individuals. J Immunol. 2005;175:591-98.
Yip MSh, Lan NH, Yan Ch, Hung P, Yeung HH, Daëron M, et al. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol J. 2014;11:82.
Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, et al. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019; 4(4):e123158.
Peng H, Yang L, Wang L, Li J,Huang J, Lu Z, et al. Longlive memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients. Virology. 2006;351:466-75.